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ABSTRACT

This thesis treats the problem of determining the eleva-

tion an.Ie needed to initialize an underwater sound ray

tracing algorithm used to locate tae position )f a target

vehicle. At regularly spaced time intervals the vehicle

pings a syrchronized sound signal waich is received by a

(short base line) sonar array containing four hydrophones

positioned at four of the corners of a cube. Tie wavefrcnt

direction angles are determined -;rom. the arrival times at

tc.e four hydrophones.

Current methods for using such time data t) prcduce an

apparent position suitable for ray tracing are reviewed.

Then fcur new methods are deveioped and documented mathemat-

ically. All methods are compared under a simulated environ-

ment of a sound speed profile which is linear bith depth.

One of the new methods is judged to be an impr)vement over

current methods in this idealized environment. Finally the

improved method is used ta estimate the variability in the

time data from a real hydrophonic tracking problem.
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'A

I. INTRODUCTION AND BACKGROUND

A. BACKGROUND

Suppose that an underwater acoustical sou_-ce emits a

signal at a known time. Suppose that the times of arrival

of that signal at the hydrophones on a three dimensional

sensing array are also known. Finally sdppoSe that the

speed of scund in water is modelled as being homogeneous

over time and horizontal displacement, varying only with

depth. TheL the angle of elevation (A), and the time (T) of

the arrival of the signal at the acoustic center of the

hyirohone array can be determined. If the -elationshi

tetween the speed of sound and the depth under water is

known exactly, then the angle A and the time T can be used

to trace the signal trajectory back over its ray jat-

(called ray tracing) to determine the original position of

the acoustical source [Ref. 1]. However, full realization
of this method in actual hydrophonic tracking Ls prevented

b Y two primary sources ot inaccuracies in the process. The

first and irobably greatest problem is that tae speed of

souind pzofile can be approximated at only a fei locations,

usually at great cost to achieve even aoderate accuracy. In

addition the profile is certain to fiucuate over time and

location. The second jroblem, confounding the first, is

that there may be innacuracies, of uaknown size, in the time

data values recorded by the sensing array.

B. PURPCSE

As noted in [Ref. 1] the procedure of de-: ermiinj a

sound source positicn UL" ray tracing is very sensitive to

even small errors in the anjle of elevation or speed of

10
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sound at the sensinj array. Cf course ray tra.-in is also

Li h..ly iependent on the azcurate determination or the tne

transit time from source to array. 7he Lur se of this

study is to develop an appropriate model of the timing data

observed in the hydroFhonic trackirng problem. The ohjective

of the desired model is to estimate the error in the time

values, and produce improved estimates of the iaitial angle

and ray transit time, so as to reduce tne effect of thcse

errors on the zayr tracing procedure.
-n -ursuit of these objectives this thesis first reviews

the currently used models, which are called the NAVY and

NAVYA methods. Then four alternative models are develcped,

called the L.S., L.S.C., M.L.P. and M.L.S. methois. Finallv

the performance of all six models are evaluated and compared

using simulation studies. The comparisons are made under

the idealized conditions of a known linear speed of sound

versus depth relationship.

C. TRACKING RANGE CCNFIGURATION 0

The tracking range which supplied data for this study'

consists of several separate three dimensional hydropnone

arrays sitting on the sea bottom. They are lared out in a

rough grid, each array being approximateiy 750) feet from

the next, so that the sound source being tracked is never

more than about 5000 feet from the nearest a-ray. The

arrays are at depths cf roughly 1000 to 1300 feet.

Each array (see figure 1.1) has four indelendent hydro-

phones defining an orthogonal coordinate system. ThLe phones

are referred to as the x,y,z, and c nyrophones, and are on

four adjacent vertices of a cube (see figure 1.2 - with sides

of length D (usually 30 feet) The arrays -ae linked to

shore based computers by electronic cacle. Tli origin of

the iccai coordinate system of each arrdy is at the acoustic

11
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sea sur:ace

sound source
// osition

/I

- ,/z" ray paths to

/, hvdironhones
-

-///

hvirozhonic /

array - /"

, "! i~~ / / / ",I / / / / / / / / I'1/ / , /. .' , in / d - /
," • /' . •, " ", , ' ," r 0 , -'_cn l ~*cable /

€ i - • • , ,. ... .. # /J--- / I

Figure 1.1 Acoustic Signal Detection by

Three Dimensional Hydrophonic Array.

center of the array, which is the center of the cube defined

by the four hydrophones. Therefore tae hydropnones are in

the positions

x ( D , -D , -D ) / 2

y -D , D , -D 2

z: C-D ,-D, D) /2

c ( -D, -D , -D ) / 2

in terms of tue array's local coordinate system.

12
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/ ' acoustic cen~ter

Figure 1.2 Geometry of Hydrophonic Arrixys.

The sound source is equipped with a clock s3ynchronized

with the shcre based computers and emits a signil at speci-

fied intervals. The times of receipt of those signals at

the four hydrop'nones are recorded, and the zorrespor.diny;

travel times are calculated by subtraction of the s ignal1

emission time.

D. APPARENT POSITIOVS

The first step in estimatingi the position of a so unl

source is to lo so under the assumption that th3 sound wave

travelled its entire trajectory through water which had a

cornzAit sr-eed of sound. The result, called the apparcnt

position, is obviously erroneous, but is then -orrected by

13
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the ray tracing procedure (a description of waich follows

later). The constant velocity value used is usually the

estimated speed of sound V at the depth of :he sensing

array.

The constant velocity assumption implies that the wave-

front is an expanding sphere. Therefore the apparent posi-

tion is calculated using simple spherical equations

involving squared distance calculations. Specifically, if

Tx is the travel time recorded for tie x-phone, then V-Tx

is the distance between the apparent positi)n and the

x-phone. This distance is also equal to the usuil geometzic

distance between the two positions

( X , Y , Z ) (apparent position)

and ( D ,-D ,-D ) / 2 (x hydrophone position).

E uating these two squared distances, and eguating their

counterparts for the other three hydrophones, tie equations

(1.1) are obtained.
2 2 2 2T2

(X - D/2 + ( Y + D/2 ) + ( Z + D/2 ) = V2T

X + D 2 + ( Y - D 2 ) + ( Z + D 2 2 2= V
y

2 2 2 22(X + D/2 ) + ( Y + D/2 ) + ( Z - D/2 ) = V2T
z

2 2 2 2_,2(X + D/2 + ( Y + D/2 ) + ( Z + D/2) = V2T
c

Assuming that the times Tx, Ty, Tz, and T; are known,

(1. 1) is a system of four equations in three unknowns X, Y,

and Z. This Dverdetermined system will, in gene:al, have no

exact solution. In fact, even if the time values were

exactly correct, the system would still have no exact solu-

tion. This is because the equations correspond to the

straight line ray paths due to the constant velocity assump-

* tion, whereas the time values correspond to tie true ray

paths which are not straight due to the actual variation of

velocity of sound alcng the raj path. This is a subtle, but

very important point.

14
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To throw out one of the e.uitiin6 ar-itrariii, so a6 to

reduce the s."stem to three e(juatians Ln three :i;kaowns, is

4 to throw away in -ormation from ont of th- hydrophones. The

psuedo solution currently utilized is to subtract the fourth

equdtion from each of the first three, yielding a system of
t~icee eqcuations in three unknowns6 wa ich a liois an exact
soluticn involving information from all four hydrophoes.

However that solution will not, in general, satisfy any of

the origir.al four equations, and is oaly one of many reaon-

aLle ways to choose an approximatt- solution.

E. INITIAL ELEVATION ANGLE AND RAY TRANSIT TIME

Assuming that a solution (Xa,Ya,Za) has beei determined

for the apparent position, then the initial angle of eleva-

tion is just the angle of elevation of that solution, given

by (1.2).

A1 = arcsin a + 2  ) (1.2)

The otjective is to find an apparent positiol (Xa,Ya,Za)

such that (1.2) computes an angie which appr)ximates the

physically correct elevation angle as closely as possible.

The solution (Xa,Ya,Za) and the times Tx, Ty, Tz and Tc car.

then be used to determine an appropriate value f)r T, whicil

is the 'ray transit time', or time of arrival of the soand

wave at the acoustic center of the sensing a.ray. The

currently employed method uses the proportional relationship

of equation (1.3), where B and Rc are the randes from the

apparent position to the acoustic center and to the c hydro-

phone respectively, as in (1.4).

15
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R /o€1
= V1  R r T =T R (1.3)

ST

R = Y + Z

a a a (1 4)

P" 2 + (Y +D/2) 2 (Z +D/2)2
c a a

F. RAY TRACING

Whichever method is selected to produce tie apparent

position (Xa,Ya,Za), it is transformed into the estimate of

tae true sound source position (X, Y, Z) by the procedure of

ray tracing. When there is velocity layering ii the water,

the ray path is no icnger a straight line. This is treated

using repeated applications of Snell's Law [Ref. 2 p.1 3 1],

starting with the layer of water in which the array sits,

and backtracking upwards through successive velo:ity layers,

until the estimated ray transit time T is consumed.
The layering effect is artificially induced by the limi-

tation that the speed of sound can be estimated at only a

finite number of depths, the result of which is commonly

called the water column. For example, at the tracking range

studied the speed of sound is measured every 25 feet,

starting at the depth of 12.5 feet. Hence, for example, the

tLird layer from 50 to 75 feet deep is assumel to have a

constant speed of sound equal to that measured at 62.5 feet.

The first layer processed [Ref. 3 p.4] is the partial

layer lying between the array and the deeiest lafer boundary

that is shallower than the array, with thickness ZI (see

figure 1.3).6
The incremental slant range in the first Layer is 31

given by- (1.5), where Al is th- initial elevation angle

estimate.

1
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The incremental travel time in tae first Layer is 

given by (1.6), where V is the velocity estimated for the

layer in which the array is situated.
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The incremental Lcrizintal distanze t:-avellel by the ray

in the first layer is HI iven by (1.7).

H S1 cos (y (1.7)

To determine the angle of elevation in the next layer,

Sneli's law (1.8) is applied, where V2 is the speed cf sound

estimated for that layer.

cos(AI ) cos (A,)= (1.8)
VI V2

When (1.8) is sclved for the zosine of tie angle of

entry into the next layer, (1. 9) is obtained.

* . cos (Al)

cos(A) = (1.9)

The procedure of computing the incrementaL values of

slaint range, time and horizontal distance are now repeated

for the second layer. The overall procedure is repcated

upwards through layers 2,. .. ,n , where n is the first layer

in which the sum of the incremental travel times exceeds tne

total ray transit time, as in (1.10).

T1 + T2 +  Tn > T(.10
( 1 + 2 . T) (1. 10)

in the last, uppermost layer the values Tn, Sn, Hn, and
Zr. must he adjusted to compensate for overshooting the total

time T. The values Hi and Zi (i=l,...,n) are then accumu-

lated to get (1.11).

n n

H - H z = z. (1.11)
Ni= 1 isi 1

NOW the raytraced position. estimate is given by (1.12).

181
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x = (Y H) X" +ya a a12)

Y Y~' H -72 X 2

Z = Z

The sensing array is usually not aligned wi:,. the coor-

dinate system of the overall tracking range. ThereforE the

apparent position, which is in terms of the local array

coordinates, . must be changed by a suitable geome tric trans-
* j formation ~rior to ray tracing so as to account for the

angle of tilt at which the array sits on the sea bottcm.

After ray tracing, the position estimate must he again

transformed to account for rotation of the array about its Z

axis away from a position which is aligned with the range

coordinate axes. Finally a simple translatL on must be

appliEd to reference the position estimate to the range

coordinate system origin vice the acoustic ceater of the

array. The end result is a position in terms of the overall

range coordinate system. These transformations are not

given here because they are used after the estimation of the

initial angle and time, and hence do not affect the accuracy

of those estimates. See [Ref. 3] for further de:ails.

G. DISCUSSION

If the velocity versus depth relationship i3 smooth anI

estimated accurately, then the ray tracing procedure is

surprisingly robust with respect to the thickiess of the

layers. For example, if velocity is linear versus depth,

and is known exactly, then the exact hydrophone times, ray

transit time and initial angies can be computed [Ref. 4] for

any given sound source position. Then the ray tracing

* procedure, with layers as thick as 25 feet and targets as

far away as 3000 feet, still estimates positions to within

inches of each of the true coordinate values. This seems to

iLdicate that errors resulting from position estimation are

19
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not due to tLe approximation ty layers, except p~ssily whe:n

there are radical changes in the velocity pattern within

single layers suzh as frejuently occur in layers near the

water surface. Rather such errors appareatly ara due nost>

to inaccuracies either in the estimation of the speed o-

sound profile itself, or in the initial angle and trar.sit

time estimates. This study will focus on those .rrors whic.,

are involved in the time values observed at the hydrophones,

and attempt to Eroduce methods of initial anjle and transit

time estimation which reduce the effects of tno3e errors on

the overall osition estimation procedure.

20
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II. CUBRENTLY EMPLCYED IETHODS

A. BASIC CONCEPTS

The methoi currently used for estimation of an initial

angle and ray path transit time focuses on the four spher-
ical eauaticns (1.1) given in Chapter I. A; previously

discussed, these e~uations have no exact solution because:

1. the-, form an overdetermined system of four equations

in three unkncwns;

2. the time values recordel at the hydro,)h)nes may be

innacurate due to unknown sources of error in the

observation process; and

3. even if the time values were exact, thel corresponl

to a nonconstant velocity profile, and so will not be

be correct for the constant velocity geometry (spher-

ical wavefront) assumed by the eiuations.

As previously mentioned, the psuelo solutiOn chosen by

the current method is to subtract the fourth s~harical ejua-

tion from each of the first three, and solve the resulting

system of three equations in tAree unknowns. This method

has the beneficial quality that information is rctained from

all four hydraphones, whereas to just drop the fourth eua-

tion (or any one of the equations) without the initial

subtraction would cause complete loss of the irformation

from the data recorded by one of the hydzopnoe;. However

it is important to realize that the solution thus obtained

does not actually satisfy any of the original iour

eduations.

it should be noted that the development of tiis solution

in [Ref. 3] is done entirely from a geometrical point of

view, and does not mentioii the system of foir spherical

21



e.uations. :-he text of [Ref. 3] does not draw i ttentior. to

the fact th-at the solution develoied is just one of many

plausible choices, none of which will satisfy all fou:
spherical ccnstraints. Therefore the solutioa choser. is

treated as though it were the exact solution, only sulject

to errors in the observed hydrophone time values. However,

even with exactly correct time values, this currer.tly

employed method will not yield the true elevatibn a.ngle and

ray transit time. This is due to the assumption of a

constant velocity vice the true nonconstant velocity

profile. This conflict introduces an automatic bias in the

initial angle and time estimates currently used for ray

tracing.

* B. CCMPUTATIONS

To simplify notation, let (X,Y,Z) be the co rdinates of

the apparent position which was formerly denoted (Xa,Ya,Za).

Then when the current solution is applied, the first step is

to subtract the fourth equation from eacn of the other

three, which produces the equations (2. 1).

X - D/ 2 ( X + D/2 )V2 2 _ 2
C X (2.1)2 2 2 22 )

Y - D/2) (+/2 ) = V T

(Z - D/2 )2 _ ( Z + D/2 )2 = V2 (T 2 _ T2 )
C z

The solution to these are easily oitained, as in (2.2).
2 T 2  _2z = v2  ( T ) / 2 D

r, x (2 .2 )
Y V (T 2 _ 2 ) / 2 (

2= *2 ( - )2/2
C 

Then the initial elevation anle estimate is (2.3).

A = arczin Y (2.3)

22



The ray pata transit time to the acousti: center is

(2.4), wnere 7. and Rc are as Iefined in Chartkr 1 by (1.4).

T = T C R / (2.4)

This method of determining the apparent position snail

hereafter be referred to as the 'Navy letnod', or 'NAVY' for

short.

C. ADJUSTMENTS TO THE ORIGINAL SOLUTION

Experience has shown that the NAVY nethod produces a.,

apparent josition estimate which usually can be improved bv

an adjustmEnt which is described in this section.

The cosine of the an4le between the i-th axis and the

straight line from the origin out to the apparent position

is called the i-th direction cosine Ci. It is a fact of

geometry that the sum of the sjuares of the three direction

cosines must eiual unity. Therefore the method is now

adjusted to reflect that constraint.

The direction cosines used are the angles nade by the

ray path at the c hydrophone. Therefore the (X,Y,Z) coordi-

nates calculated by the original method are first translated

to coordinates referenced to tne c-pnone as the temporary

origin, as in (2.5)

X =X + D/2 Y = Y + D/2 Z =z + D/2 (2.5)

Therefore the three direction cosines ar3 jiven by

(2.6)

C = V /VT C = Y / V T C = Z / V Tx c c y c c z c c (2.t)

The dencminators in (2. b) are all VoTc beciuse that is

the range from the apparent position to the c hydro hone, as

estimated by the time from the c hydropnone. Ideally tiese
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cosinES sC,0111 add to unity when s :uared. Tner3 fore if fCc

is the 'direction ccsines cofrection' factor dinel b"

7), then DCC should be close to one.

=V + D- (2.7)

:eviation of DCC from unity is interpreted a3 an indica-

tion of receiver timing errors, array malformation or

i.valid data at one or more of the hydropno2es [Ref. 3

p.C-3]. Currently if DCC lies outside tae interval

(0.98,1.02), the data is liscarded as being excessively fall

of error. The direction cosines of the remaining acceptahle

data points are rescaled using (2.8) to assure satisfaction

of the direction cosines constraint.

S= C / DCC C' = C / C C' = C /DCC (2.8)x Y y z z

A corrected set of new coordinates are -omputed by

(2. 9), still being referenced to the c nydrophone.

V = . ' V. = V T C' " ,. .
c x c C , z (2.9)

These are then translated by (2.10) to coordinates

referenced to the acoustic center.

X - D/2 Y = Y - D/2 Z = Z - D/2
c c c (2.1I0)

This adjusted method of determining the ap) arent :csi-

tian shall hereafter be referred to as the 'Navy Adjusted

Method', or 'NAVYA' for short.

D. DISCUSSION

When a sound source is within the detectibn range of

more than cne sensing array, each Array produces ti.n-.

data. The data from each array can be processed to rcdice
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a position estimate. ideally th.ese multijle estimatEs o:

position will he in reasonaLly close alreement. However

experience with actual tracking data has shown :hat this is

not the case in many of the multiple detection o~portuni-

ties. This tendency toward disagreement between ultirle

estimates of the same -osition is zommonly called the cross-

over, or crosstalk, problem. This problem often occurs when

the sound source is moviL; away from the trac;<ing domain of

one array into the trackin, domain of another. This study

foruses on improvement of the initial angle and tiMe esti-

mates, wich hopefully will help alleviate tne crossover

Frob!em.

The current choice of a 'test' compromise solution

appears to be based on reasons of simplifying geometry and

calculations. These are worthwhile ozjectives, nut do not

in themselves reflect the need to estimate accurately the

initial elevation angle and ray transit time. Since taiere

exist physically correct values for both the aigle and the

time, those values will produce the exact position after ra.' 9

tracing, provided that the velocity profile is known

exactly. The desire then is to estimate these true values

as accurately as possible.

The question at this -oint is whether or not the direc-

tion cosines adjustment causes the estimated apparent iosi-

tion to he closer to the true apparent position. Experience

has indicated that it does [Ref. 3 p.C-7]. However the

effect of the adjustaent can be interpreted in terms of the

orijinal four spherical e~uations (1. 1). The rescalin; of

the directicn cosines given by (2.6), so as to assure that

their squares add to unity, is eluivalent to rescalinj the

quantities in (2.5) so as to assure that their squares udd

to (VoTc)2. That is exactly the constraint s:atEd by the

fourth spherical Euation of (1.1). So the effect of the

adj istmtnt is to require that tne fourti equation,
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concernin the data at hydrophone c, is exactil satisfied.

This reluirement will, in general, assure that the cther

three euations are not satisfied. Since expecier.ce shows

that the adjustment cften improves the solution, this seems

to imply that the fourth equation is somehow mo. e important

than the other three. Or it may just Le that exact satis-

faction of one of the ejuations usually assures a reasor.aLiy

gool compromise solution.

Tc summarize, the NAVY metnod provides a useaLle

aparent position suitarle as input for ray tricing. But

the direction cosines adjustment used in the NAVYA method,

for reasons not understood at this time, appears to improve

that position as indicated by test results. Tiose results

are supported by the results of this thesis (see Chapter V).

However, as will be demonstrated by the example considered

in the next section, the DZC correction factor o. the NAVY_A

method has an effect which must be something more than just

the smoothing of timing errors.

E. A COOPUTATIONAL EXAMPLE

For the purposes of illustration and comparison, suppose

that a 30 foot sensing array is at a depth of 1300 feet,

that the coordinate system origin is at the array acoustic

center, and that the array arms are parallel to the coordi-

nate axes. This implies that the four hydrophones are in

the positions:

x : (15, -15 , -15)

y : (-15 , 15 , -15)

z : (-15 , -15 , 15)

c (-15 , -15 , -15)

If there is a sound source known to be in position

1000 , 3300 , 90)

then the depth of that source is 1300 - 900 = 40) feet.
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Figure 2. 1 Sample Depth Versus Velocity Profile.
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Figure -. 1 shows the estimated sound velo; ity prcfile

which was estimated for the data uses in the course of this

thesis. As zan be seen, the prozile is primarily linear at

depths reatec than 100 feet. The profile at deptas greater

than 10 feet is reasonably approximated Ly the linear

relationshiE

V = 4840.7 + 0.03314 * DEPTH

Therefore suppose that in tnis example problem the

velocity rofile is known exactly, ani is given )y the azove

linear relationship.

Under these circumstances, with known lin3ar velocity

profile, and known sound source location, the exact times of

arrival of the sound wave at the four hydropLones can be

computed usinj the methods set forth in Appendix A. Those

exact tiimes (in seconds) are:

Tx 0.6779686893 Ty : 0.6742257788

Tz 0.6782243197 Tc : 0.6798324156

The corresponding exact values for the initial elevation

angle, ray transit time and resuiting apparent ?ositior. are

also directly computable. Those computations will hereafter

be be known as the EXACT method, and will roduce the

correct true position after ray tracing. The results of the

EXACT method are given in Table I, along with the corre-

seondin, apparent position estimates produced waen the two

methods, NAVY and NAVYA, are applied to the (errorless)

time values.

At first glance the differences in Table I migat seem

rather small. However it is important to recall that these

are produced under the ideal conditions of a very smooth and

exactly known velocity profile. These idealizations are far

froia the realities of a nonlinear velocity profile which is

es mated by a procedure involving errors which are unknown

and proLably significant. Such reaiities migh: well cause

the differer.ces in Table i to be significantly larger. The

28
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TAL I
Single Exampie Comparison ofNAVY and NAV _A ethods

Transit Time Elev. Anla
Method T_ _

NAVY 0.67526969 15.26459

NAVYA 0. 67527027 15.26461

EXACT 0.67527043 15.27002

p Aarent Position Estimate

NAVY ( 1005.957 , 3017.874 , 868.143

NAVY_ ( 1006.087 , 3018.259 , 868.255

EXACT ( 1005.966 , 3017.8)9 , 868.555 )

nature ard size of those differences remain difficult to

determine until -:ire is'known about the the velocity profile

estimation errors and their effect on the position esti-

mating process. In any event even the small differences in

Table I might be magnified during the ray tracing process

under the conditions cf a realistic velocity profile.

The differences illustrate the very important point that

the direction cosines adju stment causes chanqes in the esti-

mates even when the time data is free of all er:or. Hence

the deviaticn from 1.0 of the correction factor DCC is not

just due to array malfunction, receiver timiig error or

other sources of non-valid data as previously assumed.

In the example above, the NAVYA method produced a

slightly better time and angle value than the iAVY method.

However, in this same example the NAVYA method produced an

apparent position estimate which is sligntly farther away

from the EXACT answer than the position estimated by the
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NAVI method. This is only one example, and its results

should not he generalizei. However it iliustrant s the point

triat apparently the true effect of tne adjustment may not be

well understood.

Furthermore, the adjustment seems to ?lace htav':'

enphasis on the time value recorded at L.ylrophone c.

Therefore the effect of the adjustment may well depend

largely on the accuracy of that one particular data value,

which is a relatively unbalanced detendence in the presence

of data errcrs.
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III. PLANAR WAVEFRONT MODELS

A. THE PLANAR WAVEFEONT ASSUMPTION

When a sound wave travels in constant veloci:y water, it

expands in the shape of a sphere. If the velocity profile

is variable instead, but is reasonably well behaved versus

depth, then the expanding wave is a smooth distortion of a

spherical surface. in either case, if the wave has

travelled a long distance when it arrives at a hydrophonic

array, then that small piece of the wavefront ihich passes

through the 30 foot cube spanned by the array may be approx-

imated reasonably by a flat planar surface. Thi3 approxima-

tion is the basis of the planar wavefront models developed

in this chapter.

B. PLANE EQUATIONS

A plane in space is fully defined by ideitifying any

point (X0,YO,ZO) on the plane, and also a vector (C1,C2,C3)

of unit lenjth which is perpendicular to that plane. The

vector is called the unit normal vector for that plane.

Then any point (X,Y,Z) ou that plane must satisfy the equa-

tion of the plane, namely (3.1).

cI X - X + c2 ( y - Y 0 + c3 ( z - z 0 = 0 (3.1)

The perpendicular distance from the plane t) any point

(XI,YI,Z1) not on the plane is the absolute value of (3.2).

4 C X -X 0 ) + c2  Y )+ C - ) (0 2 1 0 3 1 0 (3.2)

4
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C. BASIC 1CDEL EQUATIONS

Consider a coordindte system whose origin i3 at hvdro-

phone c, und whose axes are alijned with the three array

arms. Let C1, C2 and C3 be the direction cosines on th X,

Y and Z axes respectively for the vector from tae orijin to

the apparent sound scurce position. Then (0l,C2,C3) is

itself a vector, of unit length, which is perpendicular to

the planar wavefront emanating from the soind source.

Therefore (C1,C2,C3) can be used as the normal vector for

the wavefrCrt plane.

In the coordinate system referenced to the c-j:hor.e as

the origiL, the acoustic center has coordinates (3,D,r)/2,

where D is the length of an array arm. When the soundwave

plane arrives at the acoustic center, it wiLl have the

euuation (3.3)

C X + C2 Y + C z = (C + + C) / 2
3 1 2 3(3 3(3.3)

The x-pnone has coordinates (D,D,3), an a he distance

between it and the soundwave plane at the acoustic center is
(3. 4), which then simlifies to (3. 5)

I D/2-D+ CD/2 - 0 )+ c 3 ( D/2 - 0) (3.)

D C -C - C2  + C, ) / 21 (3.5)

' This distance is measured in a direction p. rpendicular

to the wavefront plane, and so is measured in the direction

of travel of the soundwave. Therefore the same distance is

also erual to (3.6)

CT T)(3.6)
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In (3.6) V is the velocity of sound at the a:ray, Tx is

the time of arrival of the sound wave at the x-phone, and T

is the time of arrival of the sound wave at the acoustic

center. 7he term "distance" is ised loosely in (3.5) and

(3.6), because these quatities may be neyative. The true

distances are the absolute values of these quantities.

Since the next step is to equate these two distaices, it is

only necessary to show that these two iuantities always have

the same sig n. There are two cases to consider, dependLng

or. whether the first comnonet of the apparent position is

positive (X>O) , or neqative (X<O) . Let (X',DO) be the

intersection of the X axis with the wavefront ?lane as it

passes through the acoustic center. Then (3.3) can be used

to solve for X', namely

X1= D (Cl + C2 + C3) / 2 C1.

Now consider the case where X>O. Then C1>0 ilso, and if

(3.6) is positive, then

Tx > T

wich implies that the wave arrives at the acoustic center

before it arrives at the the x hydrophone. Therefore, since

X>O, the plane at the acoustic center will intersect the X

axis at a pcint beyond the x Lydrophone, or ('>D, and hence

X' > D => (Cl + C2 + C3)/ 2 C1 > 1

=> C1 + C2 + C3 > 2 C1 (sinca CI>0)

=> -C1 + C2 + C3 > 0

=> (3.5) is positive .

A parallel argument applies for the case of X>0, thus

establishing that (3.5) and (3.6) always have the same sign.

E,.aation (3.7) is the result of equatin these two

quantities.

-cI + + c + ( 2 V T / D ) - ( 2 V T / D ) = 0 (3.7)
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For convenience, let K = 2V/D, and then aply the saae

logic to the listances of the y, z, and c hidr oph:nes fron

tie wavefront plane as it passes thzo ugi. tae acoustic

center, to obtain the equations of (3.6).

C - C - K T + K T = 0
3 X

-C + C - C -K T + K T = 0
1 x

- 1 - C2 + C -K T + K T = 0
S 2 3 z

C1 + C2 + C3 + K T - K T = 0

The system (3.3) is four equations in four uiknowns, and

is the planar model's version of the equations (1.1). :he

unknowns in (3.8) are C1, C2, C3 and T. However there is

the additional constraint that C1, C2, and C3 aze direction

cosines, dnd therefore the direction cosines constraint

(3.9) is a fifth equation, creatinj a a system of five equa-

tions in four unknowns.

2 2 2
c + c + C3  = 1 39)

Generally there is no set of values (C,C2,'3,T) which

will satisfy a.l five equations at once. This is because of

the realities of a nonplanar wavefront and the presence of

timing errors. The next section developes a method that

produces set of values for the unknowns which is intended to

satisfy those e uaticns reasonably well.

D. NIVIBIZATION OF SUM OF SQUARED ERRORS

Let Ei, (i= 1, 2, 3,4) be the value of the le: t hand side

of the i-th eluation of (3. 8). Then Ei measures the amount

of error in the i-th equation caused by the chosen solution.

It is impossible to have Ei=O for all i=1,2,3,4. However

sowe ccmpromise may be made. Specifically tha compromise

chosen here is the classic minimization of (3.10), the sum

of squared errors.
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I + 3 + E3 (3. 10)

M inimization is to Le done subject to tha direction

cosine ccnstraint (3.9). Application of the Lagrange multi-

plier techni ue [Ref. 5 p.55] calls for the minimization of

(3. 11) over all possible choices of C1, C2, C3, T and

lambda.

4 /3

L2 - C C 2 1 (3.10

Taking the jartial derivative of L with raspect to

yields (3.12).
LE 4

I(-2K E.) -2K ( El + + E + E
T i=l 2) (3. 12)

2 K [-2K T + K ( T1 + T 2 + T3 - T 4 )]

Equating (3. 12) tc zero and solving for T yi. lds immedi-

ately the appropriate estimate (3.13) of T, the ray transit

time.

1i
T T + T +

2 1 3 4 (3.13)

The partial derivative of L with respezt to C1 is

(3. 14).

L- 2 ( E F E E2 ) -

aC (3. 14)

2 [4C 1 + 2KT + K (T7-- "4
1 23 4 1i

If (3.13) is used for T in (3.14), then (3.13) results.

a L_ 2 (4 X) C + 2 (T - T4  (3. 15)
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if the same procedure is used for t;ie par: ial dierva-

tives of L with respect to each of Cl, C2 and C3, and all

are equated to zero, then the results are (3. 16)

4 C , - T ) i = 1,2,3 1)

in order to solve ior the Lagrange MuitiL ier lamhda,

suare both sides of the three equations of (3.16), and add

the resultinj e~luations together. Then use the sum of

siuarEs constraint (3.9) and solve for lambia to ield

(3.17).

4 - (3.17)

Substitute (3. 17) in (3.16) and simrelify to obtain the

apprcjriate estimate of Ci, namely (3.18).

T4 -T.
C. = i = 1,2,3 (3. 18)

3 )2
( T - T.

j=1

The choice of sign in (3.18) is determined Ly the fact

that Ci is positive if and only if the sound wave arrives at

the i-th phone before it arrives at the c-phone, which in

turn implies that (T4-Ti)>0.

E. THE LEAST SQUARES METHOD

In summary, the first alternative method for determ.ning

an apparent position starts with estimation )f the ray

transit time to the acoustic center by (3.19). Then the

apparent position estimates are computed using (3 .20).

T T + T 2 + T - T4 '2 (3.19)

36



0

V T(T~, T1 V T(T T,
_-_ _____ __ "(3.23)

Z .: V -

( T, 2T.

This method shall be hereafter referred to as the 'Least

S~udres Method', or 'L.S.' for short. The apparent advan-

tages of the L.S. method are that:

1. all four hydrophone times have e' ual ieight in a

simple expression for the ray transit time T, rather

than using an expression so heavily dependent on Tc

as in the NAVY and NAVYA methods;

2. the differences of squared time values ihich appear

in the soluticns of the NAVY methods are avoided in

the L.S. method, thereby lessening tie tendency

toward computational roundoff problems;

3. the direction cosines already add to unity when

squarel, requiring no arbitrary adjustmen: ; and

4. ccmputation of the initial angle allows cancellation

of several terms, resulting in the simple expression

(3.21).

A arcsin T) T

F. BIAS IN THE LEAST SQUARES METHOD

Unfortunately a potentially serious problem exists with

the L.S. method. That concerns the conseiuei ces of the

assumption of a planar wave front. The effect is difficult
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to derive explicitly becaase it is difficuit o deternine

the true share of a wavefroot co esjonliO9 to a nonconstant

velocity ;rofile. However if it is assumed triat a s::erica'

assumption is more accurate the planar assum tion, t-en t:.:

Lias can be estimated rouhly, and then s'ibtrac:Ed f ro tho

original L.S. positicn estimate. Tis is still a i:f:icult

problem because, as previously discussed, the four iasic

spherical equations themselves have no exact solation.

Nevertheless, as a rougl estimate of the Lias, t'L

following procedure is used. First estimate -he apiarent

position by the L.S. method. :nen calculate the straijht

line distances from that position to each of tne four array

hydrophones. Divide those distances by the velocity of

sound at the array to obtain the corresponding t imes. Use

toese times to recalculate toe apparent position using t'e

L.S. method again. The difference between the )riginal and

recalcualted L.S. positions roughly measures the error that

would be made by the L.S. method when it is applied to tne

time values which correspond to a spherically spreading

sound wave whose source is in the vicinity of the original

apparent position. Therefore this difference cai be used as

a bias vector which can be subtracted from the original L.S.

solution. This bias correction is the basis of the method

set forth in the next section.

G. THE lEAST SQUARES CORRECTED METHOD

The secorn alternative method for estimating an apparent

position is as follows:

1. calculate the a~parent position P1 by USL ng the L.S.

method;

2. calculite the distances from that position to the 0

four Lydrophones, and coavezt them to times by

dividing by the speed of sound at the array;
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7. use the new tires to calculateC a new ap?arent iosi-

tion P2, usiny the L.S. uetoi;

4. caiculatu tnE difference vector P2-?1 (see i ure

3.1), and suhtract it from the original position ?I

to ottain the corrected position P

P = P1 - ( P2 - 21 ) = 2 P1 - P2

5. finally adjust the ral, transit time T calculated for

the original position P1, by asin_ the jropcrtional

trar.sfornation:

T' = T * R / R1

where F, is the rarne to the new position , and F1 is

the range to the origin.al ioositior. P1.

Recalculated
L.S. Estimate

Ori, inal L.S.
2/ / " '\ stimate

___ __- Adusted L.S.C.
// _- _ -r - - _ Estimate

Array
Center

Figure 3.1 Bias Adjustment for the L.S. Method.

This method shall hereafter be referred to as the '7east

S.uares Corrected Method', or L.S.C. for short. The iroper-

ties of the L. S.C. method, like taose ot the NAT Y A method,

aie not well understood at this time. it is offered only as
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ar alternative which may comtinie the Leneficial properties

of the L.S. and NAVY metl-.os, namely that it will:

1. estimate a ray transit time value e ,ualLy dependent

on all four data times, therezy smoothing out exces-

sive error in any one of the time values; ani

2. reflect the spherical wave assumption, believed to

provide a more accurate description than the planar

assumption.

For tarjets at a range of 3000 feet, the l~nyth of the

error vector P2-PI varies from 0 to as much as 10 or 11 feet

(see Table i1) . The error vector lengths seem to be depen-

dent cn both azimuth and elevation angles of the target fro:

the array. These patterns indicate a potential for further

investigation to relate estimation errors to suci variables.

H. IAXIMUM LIKELIHOCL CALCULATIONS

Cne shc:tcoming cf all methods described thus far is

thiit ncne of the.D can be used to produce an estLmate of the

underlying error in the time data values. The method set

forth in this secticn is a first attempt to estimate that

noise, and is again based on the assumption of a planar

wavefront.

Let 7i be the time recorded from by i-th hydroFhone.

Let 'ii Ie tae true time which, under ahsoiutelf error free

conditions, would have been recorded at thie i-th hydrophone.

An assumpticn of 3aussian noise is now made, nam.ly that

Ti = Ui + Ei

where the Ei are independent identicaily distributed noznal

random variables with mean zero and variance 32. Therefore

the 7i (i=1,2,3,4) are also normally distributed with the

samt variance, but with means Ui (i=1,2,3,4).

40



I + i . .
-  

. . . . I < --7 " - -.J . " , " -. , . , - ==- - . . = . - +

0. . . . .....CW . . . ..foLo,.. .

. -. . . . . . . . . . ~ -co w° . . . . . . . .

7 7

cJ V. . . ....-C fe 0 W N 0. . O . e.. . . - ... O. .-.

7 -7

I -4 e - . . . . . . . . . . . . . .
I~ 7d

m o. or

. . . .. . . .E. . . ... 7
di C4 V 0.. . . . . . . . . ..0....-. . ..1

- -C

0 77 N

4w : '. -4 ,Co aw.o.o..J 0x oeo

. . .. .. 4 .CSJC. . . . . . . . . . .X. Ce 0: Ce

I -

37I1 6? (n' nxr,4,
a)1 1. "

- 7Sc .C ~ C . . .C . C. . . .e . . -

-7 74~ 4 e~0t e-~1Ne 4 Ctqc..

44i~fl 1 er-..-~.j~C C ~ f~nl



Now let Cj be the j-t direction cosine (j=1, 2,3). Then

geometricaliy, using the assumption of a jlanar wavefront,

Cj is given by (3.22), whare V is tae sjeed cf -3ound at the

array, and D is the array dimension (30 feet)

C = V (U - U ) ' D (3. 22)

Letting U = U4, then (3.22) can be solved for each Uj in

terms of U and Cj, as in (3.23).

U = U-DC /V (3.23)

The Erobability density of each time value Ti is given

by (3.24).

1 (T. U. )-2
fi(T.) = 1 exp2 S (3. 24)

Using (3.23) in (3.24), and multiplying the four densi-

ties toyether, the likelihiood function (3.25) is formed.

L ( =S exp L- - i (Ti - U + DC.V) (3.25)

In (3.25) C4 has been used for notational : onveniEnce,

aid is defined to be zero. Then tne loy-likeliaood function

is formed by taking natural logs of (3.25), yLeldin; (3.26).

S -2 n TF') -4 inS) - Z 'IT -' *- (3. 2)
2 S- i=! 1

SincE the values of the Ci are to be directLon cosines,

the usual direction cosines constraint must be added to Li

to form the Lagrangian function L2 given in (3.271.
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- J(3.27)
iThe otjective is ta maximize L2 ove: ti e possible

choices cf C1, C2, C3, U, S and lambda. Ignoring S ior the

moment, maximization of L2 can be acheived by minimization

o2 L given in (3.28).

1 4 F\[+ 3 > 1
(=_ T .i - U DCX.'V) (C ) (3.28)

Take partial derivatives of L to get (3.29) Lnd (3.30).

__ 2D
V -U+ DC/V) - Ci  (3.29)

2U-4U V+ (3.30)

Eguate (3.30) tc zero and solve for U to obtain (3.31),

th e maximum likelihood estimate for the time at the c hydro-

phone.

U=i Tv (3.31)

Equate the three e.uations of (3.29) to zero, and

multiply each ecuation by Ci respectively, to ob: ain (3.32).

'- = -v -C - CC + - C.) i = 1,2,3 (3. 32)

Add the three equations of (3.32) together, and use the

direction cosine constraint to obtain (3.33).

ST.C U C + (3.-~-[Z~c - U=1 +

EZuation (3.34) results when (3.29) is ejuat.d to :ero.
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T
S1,2,3 (3.34)

C Suustitute (1.33) into (3.34) to ontain (3.35), the

maximum likelihood estimate of the direction cosines, where

U is the estimate calculated by (3.31).

T. - U

3C 
(3. 25)

3=3Z. - u T'c.

As the reader will perhaps have noticed, tie ecuations

of (3.35) define each of the uLknowns Ci in terms of all

three unknowns. Such a structure suggests that (3.35) can

be used as an iteration function. That is, i: reasonable

initial values are used for the three unknowns in the right

hand side of (3. 35) then new values are produz.d. Repeat

the process using the new values until the answe: stabilizes

within acceptable tolerances. Although convergence to the

correct solution is not guaranteed, the method has never

failed for the equations of (3.35). Jnlike the L.S. method,

(3.35) dces not have any known closed form solutLon.

Returning to the standard deviation S, take the partial

derivative of (3.27) with respect to S to get (3. 36).

'a L CT. - U + 2- ) (3.36)
S 3  i Vi

Multiply (3.36) by S3 and solve for 32 to get the

maximum likelihood estimate of the variance, given by

(3.37).

(T, - 1)
S -L V -i) +(3.37)
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I. THE MAXIMUM LIKEIIHOOD PLANAR METHOD

In summary, the third method for estimation of an

aparent position is as follows:

1. let U = T 4 initially;

2. use the L.S. method to caiculate the initial values

for Ci, (i=1,2,3), using (&e321);

1 03. use U and Ci (i=1,2,3) in the right hand side of

(3.35) to obtain new estimates for Ci (i=1 ,2,3)

4. recalculate U, using (3.31)

5. reiterate steps 3 and 4 until tie values Ci (i=1,2,3)

and U converge within acceptable tolezancas;

6. calculate S2, using (3.37)

7. calculate the estimated apjparent position relative to

the c-phone, using (3.38);

1j UC Y VU ) Z VU
c cc uC 3 (3.33)

8. lastly translate this solution and its c)rresponding

time estimate to a solution and time relative to the

acoustic center, using (3.39), where F and Rc are as

defined by (1.4) in Chapter I.

X = X + D/2 Y = Y + D/2 Z = Z + D/2C c C (3.39)

T U R / R
C

This method shall be hereafter referred to as the

''aximum Likelihood 2lanar Method', or M.L.P. for short.

Originally the hopes for this method were rather high, espe-

cially since it was the first method to produc. a variance

estimate. However subseguent experience with the method

indicates that it probably suffers significantly from at

least two factors:

1. the planar wavefront assumption probably builds in a

position bias as in the case of the L.S. aethod; and
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2. the variance estimate is inflated since part of the

noise bein measure! is due to the inadequacy of the

planar assumption.

J. COMPUTATIONAL EXAEPLE

Eor a quick compdrison, the three nernois ievel)FE i:,

this chapter are now applied to the example which was used

in Chapter II. The EXACT results calculated prviously are

included in Table 1II for comparison.

TABLE III

Single Example Comparison of
Planar Wavefront Methods

Transit Time Elev. Anile
emethod .- T_ ec_ -- I

L.S. 0.67529319 15.22798

L.S.C. 0.67527149 15.26372
M.L.P. 0.67529007 15.10437

EXACT 0. 67527043 15.27002

Apprent Position Estimate

L.S. ( 1003.809 , 3019.751 , 866.1! 6

L.S.C. ( 1006.089 , 3018.266 , 868.235 )S !.L.P. ( 997.722 , 3023.685 , 859.355 )

EXACT( 1005.966 , 3017.899 , 863.555

As can te seen easily, the M. L. P. method ares rather

Foorly in all regards, even worse taan the L.S. method.

This will Le zonfirmed by the evaluatians made in Chapter V.

Also worthy of note is the aeparent tendency o. the L.S.C.
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miethod to correct thE L. S. aetniod back toward the exact

solution. Th-e evaluatiors of Chapter V will confirmi that the

L .S.C. method almost always yields a better s:)lution tlhar

the original L.S. solution.
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IV. A SPHERICAL WAVERFRONT MODEL

A. TBE SPHERICAL WAVEFRONT ASSUMPTION

All the models developed in Chapter III ire limited

primarily by the assumption that the wavefront is planar

uon arrival at the hydrophone array. In this chaFter a

model is developed under the assumption that the wavefront

is spherical uon arrival at the array. If the sound

velocity prcfile were constant with depth then the spherical

model would be exact. This is of course not the case, but

it is suspected that the wavefront is better modelled as a

sphere than as a plane because that small piece of the wave-

front which passes through the 30 foot cute spanned by the

array is locally spherical. That is because ei ery part of
that piece travelled through approximately the same regions

of water, experiencing the same general raytendlig patterns.

The spherical assumption is accurate if and only if the

speed of sound is ccnstant over the ray path, and conse -

uently the original four spherical e uations apply once

again. They were:
(x-o/ D/2 + (Y+D/2 )2 + Z+D/2 )2=

2 2 2 2_2
(X + D/2 ) + ( Y _ 0/2 )+ ( Z + D/2 ) = VT Y
(X + D/2 )2+ ( Y + 0/2 )2+ ( Z - D/2 )2 = 2

z

(X + D/2 )2 + ( Y + D/ 2 + ( Z+ D/2 22
C

It has been stressed previously that there is no exact

solution (X,Y, Z) satisfying all four equations (s .1). That

is because the time values on the right hand side correspond

to the reality of a variable velocity profile. However, if

tne spherical wavefrcnt assumption is to be acca:ate, then a
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constant veio ity is the assumed case, and any ir.nacuracies

in the time values are rejarded as Tle to timin; errors

only. Therefore, under t he spherical assumziti on, if the j
true time values ii (i=1,2,3,4) were known a,, sufstititei

into (4. 1) an exact solution to the overdetermined systema

would be realized. 7r, that case a solution to any three of

the ecuaticns would also be elual to tidt uni -ue exact solu-

tion. in particular, the NAVY solution of Chater 1I woujl

be the true solution. Tharefore in terms of trhe cooriinate

system referenced to the L hydrophone, X would be ivEn b"

(4. 2).

D 2 T 2S= - + - - ' ) (4.2)

However, X is also 4iven by (4.3), wher? C1 is the

direction cosine along the X axis of the vector from the c

hydrophone to the sound source.

V , v (4.3)4 1

The time value of interest at the moment is J4, the time

at the c hydrophone. Therefore let U = U4 for clarity of

presentation, and tlen eruate the expressions in (4.2) and

(4.3) in order to solve for U. If this same l)gic is also S

applied to the similar expressions for the distances to the

y and z hydrophones, the results are (4.4).

U = U- (2DUC /V) + (D/V) i= 1,2,3 (4.4)

The expression (4.4) will be useful in the develonent

of the model of this chapter.

B. LEASI SQUARES MODELS

A direct approach might be to apply the l. ast squared

eLror technique to the spherical euations, in d MaLner
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paralleling that used on the four elanar eguatLons af tne

L.3. model in Chapter !Ii. However the fcrmulae and eua-

tions that result are exceedinjly complex, involve fourt,

degree :cwers of the data values .i, and have thus :ar

defied all solution attempts. Therefore th.is id--a was azan-

doned in favor of the aximum likeiihood a .- oach waich

foll.ows.

C. MAXIMUM LIKELIHOCE COMPUTATIONS

As in the M.L.P. model, Gaussian noise is assumed for

the time data values. Therefore

Ti = Ui + Ei i = 1,2,3

where the Ei are independent identically distributed normal

random variables with mean zero and variance S2. !he

density of each Ti is therefore (4.5)

expeniis ( - U. i = 1,2,3,4 (4.5)i z TS 1 72 S" )

10 form the likelihood function, muitipL y the fcur

densities together, to obtain (4.o)

L 0 =e x p L, _ ' -- . ., - - - ;( 4 O )

Form the log likeli.ood function ny taking ni tural loga-

rithms of (4.6) to oLtain L i of (4.7)

= -2 in(2W) - 4I(3) 1 FZ (T(-U1 ) .c (4.7)

n order to maximize Li with respect to CI, C2, C3 and

U, it is sufficient tc mxnimize L2 of (4.8), whe:e a suhsti-

tution for Ui has been made using (4.4).
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L = (T -. )" + - - - 22U:. /',') * t V)

( Now add the usual dir-ztioa cosines cor.straLnt anl Lori

the Tagrangian functicn L of (4. 9)

For notational ccnvenience, let Ki be given by (4.10).

K. = - (2 D U C ' V) + (D/'V) i = 1,2,3 (4. 10)

Take the partial derivative of L with respect to Ci t

get (4.11).

L = T.- K. - , -2 c -i=, (4. 11)
( 2 K. V - 3

Simplify (4. 11) and eluate to zero to yield (4.12).

C -DU T.
. i = (4. 12

Multiply the three eiuation in (4. 12) by Ci (i=1,2,3)

respectively, and add them together. T1. use the
@ constraint on the sum of squares of the direction cosiiies to

obtain (4.13).

3

,. j 2( ~F7)(4. 13)
01

Substitute (4. 13) into (4. 12) to jet the Tax. mum Iikeli-

hoodi estimate fo7 the direction cosines, as in (4. 14).

5
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Now takE the partial derivative of I with r? spect to U,

as in (4.15).
3

_ 2u - +- 2 (U- (4.15)

ljuate (4.15) tc zero and solve for J to obtain tr.e

maximum likelihood estiwate of the tiae value (4. 16) at the

c hydrophone.

D 31 (T (4. 16)4 
K

U
3 T

a j1

Finaly take the partial uerivative of Li in (4.7) witi

restect to S. Ecuate it to zero and solve to get (4.17),

the maximum likelihood estimate of the variance.

4- . + 4 (4.17)

D. SOLUTION BY A MODIFICATION OF NEWTON'S METHOD

The -olutions given by euations (4.14), (4.16), and

(4. 17) once again form a set of equations which would seem

to be solvable by naturai iteration as in the M.' .P. methcd.

Unfortunately this time the techni 1 ue fails to converce. A

mathematical tool is needed which is stronger han natural

iteration. What is used is a modified four dimensionai
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version of Newton's !ethod Ref. 5 p.4 7] to sirch for the

roots of a S t of four e.llations.

--he cbjective is to e;termine the values C1, C2, C3 and

U which satisfy (4. 14) and (4.16). For Iuzthar notational

convenience define the values M and N as in (4.I1) arl

(4. ().

Given those definitions of M and N, then tie euations

w;-.ose roots are desired can be simplified to (4.20).

T
i i (4. 23)C. = h ( C o C3 ___ 4 3

1i , == 3'

D M

= (CC ,U) =
1 - N

Now define error functions as in (4.21). :fl se evaluate

the anrcunt of error in each of t e .,uations (4.20) for an'i
set of values for (CI ,C2,C ,)

(4.21)

Let G Le the o'1r :" ,L) coil Qn vEctor

(g1,p2,g3,g4)'. Finally r Pe t,,tf matrix of artial

derivatives of S, as in (4. 22)

Newtor.'s lethod in four iima~ioio s says t:.at ir X(n) is

a four dimensional vector .,oldinw t:.a c lrrent aFproximate

roots C1,C2,C3 and U, then X_(i+1) wIil e an iMEZoveU

answer, where Xjn+*1) is 3Iven by (4.23)
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_) _i (4. 22)

GP (C!,C2 U) 22 C3 4

- ~2 ~3
q14 - 7 I3

bc 22 [ 2

--n -. (4. 23)

Of course it is necessary to calculate the derivatives

held in the matrix GP in order to use (4.23). Tiose deriva-

tives are given in Appendix B.

Unfortunately when multidimensional versions of Newton's

Method are applied, there is often a tendency for the mEthod

to converge slowly, or even diverge. :his is hecause it

tends to overshoot the best answer for each iteration. To

alleviate this problem, a modification is made to the

method. At the end of each Newton iteration, prior to

proceeding with the next iteration, a Golden Section Search

[Ref. 6] is performed to find the best possible answer in

the direction of the new iterative solution. Specifically

the line in four dimensional space from X_(n-1) of the

previous iteration to X(n) of the present i:eration is

searched for the best answer. The definition ot the 'est'

answer is that point along the search line whi:h minimizes

the sum cf squared error functions, namely (4.241

(4i. 24)

54

02



The current iterative solution X(n) is thea given the

value of the minimizingj point resuitin3 from tne Gclden

Section Search. Then the next iteration of !New:on's Method

is performed, along with another Golden Section S--arch to

find the next iterative solution X (n+1)

E. THE MAXIMUM LIKELIHOOD METHOD

In summary, the fourth and final alternatire method to

estimate apjarent positions is as follows:

1. let U = T4 initially;

2. use the L.S. method (&e321) to initially estixatE the

values of Cj (j=1, 2 ,3);

3. set X(1) = (Cl,C2,C3,U)

4. initialize the Newton Iteration counter :I = I

5. calculate the values Ki, M and N in acc)rdance with

ecuations (4. 10), (4. 18) and (4. 19) ;

6. calculate the error function vector (X(I)) , using

(4.20) and (4.21) ;

7. calculate the derivative matrix GP(X(I)), using the

results in Apfendix B;

8. invert GP (X(I));

9. calculate the new Newton estimate X(1+1) from (4.23);

0 10. perform a G ciden Section Search along the line

between X(I) and X(I+1) to find the point which mini-

mizes (4.24);

11. let X(I+1) be egual to the minimizing poLnt found in

the previous step;

12. increase the Newton iteration counter : i = 1+1

13. reiterate steps 5 through 12 until the values

X(I) = (C1,C2,C3,U)

converge within acceptable tolerances;

14. calcualte the estimate of S2 using 14.17).
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This :a-tnod shall hereafter be r f trr t. As tI.

'.laximar. Likelihood S3herica- :ethil', or :I.L.5. zor short.

As will he seen from the evaluations 'Ii ir. J ter 7, tnL

ti.L.S. method is apparentiI the only a Lternative to cor.6s-

tently rival the performance of the current> used N 'i

method. It has the additional acvanta e that _t estifltes

tI.e error present in the time data values.

F. A CCEPUIATIONAL EXAMPLE

This latest method, m. L..S., is now applied to tie same

examkle considered in Cha ters II anl 1I1. 'or d -uick

comp.arison, Table IV lists the results of using all the

methods. The error vector lengths are the distaaces of each

position estimate from the EXACT apparent position.

Since this is cnly one example, this title is not

presented for the purpose of any broad conclusioas. However

it is of interest to note that in this example

1. the M..L.S. method outperforms all others, includinj

the NAVYA method; and

2. in many ways the original NAVY metnod out:erforms the

adjusted NAVYA method.

G. VARIANCE ESTISATICN

In the computational examile, the time data values used

were exact since the methods of Appendix A coild be ised

with the known linear velocity profile. Therefore the

a-propriate value for variance in the time valies would bz

zero. For this errcr free example, the estimates shown in

Table V were obtained for the standard deviations of timing

* noise, lising the two maximum likelihood methods.

in the case of this one example, the spherL cal assump-

tion is apparently an improvement over the planar, since the

M.L.S. estimate of error is onl: 4% of the M.L.P. estimate.
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TABLE IV

Single Example Comparison of All Methods

Transit Time Elev. Anjle Lenjth of
Method --3.UE9 --- 1-(,2to

NAVY 0.67526969 15.26459 D.4128 

1 NAVY A 0. 67527027 15.26461 0.4840

L.S. 0.67529319 15.22798 3.739

L.S.C. 0.67527149 15.26372 0.522

M.L.P. 0.67529007 15.10437 13.64)

1 .L.S. 0.67527C49 15.26677 0.4117

EXACT 0. 67527C43 15.27002

Apparent Position Estimate

NAVY ( 1005.957 , 3017.874 , 868.13 )

NAVYA ( 1006.087 , 3018.259 , 868.255

L.S. ( 1003.809 , 3019.751 , 866.126 )

S.C. 1006.089 , 3018.266 , 868.235 )

L. P ( 997.722 , 3023.685 , 859.335 

..L.S. ( 1006.195 , 3018.190 , 868.375 )

EXACT ( 1005.966 , 3017.899 , 868.555 

That is regarded as an improvement because ,he correct

answer is zero. The higher M.L.P. estimate is indicative of

the inflaticn due to the planar assumption.

The tracking range which provided data for this study

records time values to seven decimal places. Ti erefore the

standard deviation estimated by the M.L.S. m-thod is of

particular interest, since it indicates errors in the

seventh decimal place even when there is no er:or present.

Since the data was actually error free in this ecampie, the
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TABLE V

Maximum likelihood Error Estimates
for the Example Problem

1ode. Method1 st. Std. Devii tion

Planar M.L.P. 5.517 E-6 secs.

Spherical M.L.S. 2.191 E-7 se.s.

estimate is a measure of the variation induced bi the sFher-

ical wavefront assumption. A broader discussion of error

estimation will be undertaken in Chapter VI.
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V. EVALIJATICNS OF MODELS

A. GENERAL

TherE are many sources of errors in the ovr rail hydro-

phonic tracking problem. These include, among others:

1. errors in estimation of the sound velocit profile;Kt
2. inhomogeneity of the velocity profile over time and

hcrizontal displacement; and

3. possible errors in measuring the positiois, and the

angles of tilt and rotation for the hydrophonic

arrays.

This study focuses on those errors which accur during

the computations preceding the ray tracing pro:edure. To

evaluate the performance of the methods developed in

Chapters ii, III and IV, it is necessary to control strictly

the ray tracing procedure. Only in that way can the differ-

Ences found between methods be attributed to the differences

hetween models, and not to any source of error oitside those

met hods.

:t ias originally hoped that the various methods mignt

L,= comjzad by applying them to real tracking data. However

it 4as fcund that tle overall tracking problem aad too many

L~r ; ourcts of errcr to allow the methods to demonstrate

a;.;A .i... f ce3. Therefore the methods were coa pared under

ano: ti.;.tlv co.trclled simulatel environment.

SIJ;ATICN SCENABIO

t-: ::er. t simulatiois are used to compare the six

::z. :.t [I od 3. roth use a basic srenario similar t3

ti.at c, t, :omiutational examile explored in Chapters Ii,

:1 L V. rhdt exampie assumed tnat:
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1. the velocity versus depth relationship is linear, and

giveL exactly by:

V = 4840.7 + 3.03314 * DEPTi ;

2. the acoustic center of each array is at a depth of

1300 feet;

3. the hydrophone arrays are all level, and their X, Y

and Z arms are parallel to the respective coordinate

axes of the tracking range.

Under these circumstances the methods se: forth in

Aipendix A can be used to compute the exact values for the

hydrolhone times, ray transit time and elevation anle for a

sound wave emanating from a sourze at any specified loca-

tion. Therefore when the zethods are applied to those exact

times, the resulting estimated positions can be compared to

the known true positicn.

C. SIMULATED ERROR FOR TIMING DATA

The models developed in this study were designed to

improve position estimation, especially in the presence of

errors in the timing data. Lacking any better m) del at this

time for timing errors, the simulated environment includes

an assumption of Gaussian errors for the hydrophone times.

Therefore realistic timing data can be simulatei by adding

to each exact time value a random ;uantity of normally

distributed error. The mean of the error is assumed to be

zero. She variance was estimated from real tricking data,

using the variance estimatinj property of the M.L.S. model.

The data from one tracking run was used, involving six

hydrophone arrays and 733 position estimates (sea Chapter VI

for data selection details). Each position from the

tracking run produces one estimate of the variance. The

variance vd.ue chosen for use in the simulations was the

median of the 733 variance estimdtes produced bi the M.L.S.

method. That value was
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32 = 9. 1204 E-12 secs2

That is the same as a standarad dtviation of

S = 3. 02 E-6 secs

Each of the two types of simulations was rai four seja-

rate times. Each run was done with a different specified

variation. Those four distinct error conditions are delin-

eated in Table VI

TABLE VI

Simulation Error Levels

RUN LEVEL VARIANCE STD. DEVIAC bON

1 z ero 0.0 .0

6 2 low 9.12 E-14 3.02 E-7

3 medium 9.12 E-12 3.02 E-6

4 high 9.12 E-10 3.02 E-5 I

D. SINGLE ARRAY SINUIATION

In the first simulation, the intent was to compare the

methods pairwise, so as to determine which me-:hod is more

likely to produce the more accurate estimate of a given

sound source position. One thousand positions were chosen
at random. Each position was 3000 feet from the array. The
positions were uniformly spread over the surface of a sphere

of radius 3000 feet, centered at tae array, truncated above

* by the water surface (depth 0) and below by the depth of the

array (1300 feet). The methods set forth in App2ndix C were

used to assure that the random positions seLected were

61
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uniformly distributed oveL the surface area of tLe truncated

hemisphere.

C Each of the 1000 raniomly chosen source p,)sitions was

then processed as follows:

1. calculate the exact hyirophone times, using the

methods of Appendix A;

N 2. add to each of the four exact times a raLdom value of

error at the specified level (zero, low, medium or

high);

3. apply each of the six methods to the hydrophone

times, generating six different apparent ?ositions;

4. apply the ray tracing procedure to each of the six

positions, using layers that are 25 feet thick, an&

utilizing the known linear velocity profile, thereby

* producing six different estimates of the 3ound source

iccation;

5. compare the six different estimates pairwise to see

which method in each pair produced the estimate

closest to the true sound source location.

The comparison being made is that one method is consid-

ered preferrable to the other if it more freguetly Froduces

the more accurate estimate.

The layer thickness of 25 feet was selected order to

simulate the actual procedure at the tracking range which

provided data for this study. However, as discussed in

Chapter 1, when the velocity profile is smooth and known

exactly, the process is very robust with resoect to the

thickness used. The thickness values 1, 10, and 25 were all

tried, with virtually no changes in any of the comparisons

between methods.

0
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E. SINGLE ARRAY SIUIATION RESULTS

Tables Vi. and VIII contain the results of the sirle

array" simulation. Each tabled entry represents :-ne fraction

of time that the method of that row produced a better esti-

mdte than the method of that column. For example, in Tatle

VII, the L.S. method outperformed the ..L.S. me:hod in only

5.30 of the 1300 trials with low error values.

In a one tailed test that one method is )etter than

another, these binomial kroportions are significant at the

0.05 level if they exceed 0.526. Symmetrically, one method

is significantly worse than another at the 0.05 level if the

praporticn is less than 3.474. For the 0.01 level the

corresponding critical values are 0.537 and 0. 463

respectively.

The results indicate that:

1. as praviously claimed, the NAVYA method usually

outperforms the unadjusted NAVY method; of particular

interest is the case of zero error whi.h actually

ccmpares the relative ability of each method to

produce the exact answer when given the exact times;

in those cases the NAVYA method does extremely well

against the NAVY method;

2. under all error conditions the most successful

performer is the Mi.L.S. method, since it always has a

favorable (greater than 0.5) compariso n fractioa

against all other methods; the M.L.S. fractions vary

little over the four error levels;

3. under all error conditions, the worst performer is

always the M.I.P. method;

4. spherical methods consistently outperform planar

methods; and

5. increased error levels tend to lessen the distinction

between methods; in the zero error case comparisons
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( I TABLE VII -

Single Array Simulation Results
for Lower Error Levels

EB"F. LEVET Z21 0

*INAVY NAVY_ A L.S. L.S.C. M.L.P. M.L.S I
N iAV Y .011 .950 .676 .987 .420

NAV A .989 .95 .728 .987 .434

L.S. .050 .050 .050 .987 .057

L.S.C. . 3 24 .272 .950 .987 .346

M.L .. 013 .013 .013 .013 .013

M. ~ L. S. .560 .566 .943 .654 .987

I 11

IRF.OR LEVEL LO i

NAVY NAVYA L .S. L.S.C. M. L. P. M .L. S.

NAVY .165 .952 .648 .987 .396

NAVY_ A .835 .952 .693 .987 .405

CjL. S. .04i8 .048 .048 .987 .058
L.S.C. .352 .307 .952 .987 .369

1.I..P. .013 .013 .013 .013 .013

A.L.S. .604 .595 .942 .631 .987

are in the initerval (0.01,0.99), while in the high

error case that interval is narrowed con3 iderably to

(0. 37, 0.6 3)

F. DOUBLE ARRAY SIBIJIATION

i n the second simu la tion., the intent again was to

coaiparE the methods pairwise, this time deteimining which

method is more likely to produce position~s which agrEe more

clost~y in the two array zrossover problem. This is not the
64
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TABLE VIII

Single Arra Simulation Results
for Higner Error Levels

EEROE LEVEL :M ED I U,'!

NAVY NAVY A L.S. L.S.C. M.L.P. M.L.S.

NAVY .464 .819 .559 .987 .435

NAVYA .546 .821 .566 .987 .437

L.S. .181 .179 .181 .971 .177

L.5.C. .441 .434 .819 .987 .450

m . . . .013 .013 .029 .013 .013

IIi.S. .565 .563 .823 .550 .987

ERROR LEVEL HIGH

NAVY NAVY A L.S. L.S.C. M. L.P. M.L.S.

NAVY .466 .544 .439 .562 .431

NAVY A .514 .546 .516 .559 .431I .S. .456 .454 .457 .557 .400

L.S.C. .561 .484 .543 .562 .427

M.I.P. .438 .441 .443 .438 .373

M.I.S. .569 .569 .600 .573 .627 10
same Guestion as that addressed by the single array simula-

tion. The two estimates produced by any one me thod may be

very close to each other, and yet be far away from the true

position.

For the double array scenario two arrays are used, sepa-

rated by 7500 feet, both at depths of 1300 feet.. The arms

of each array are parallel to the corresponding coordinate

system axes. Once again 1000 positions were randomly gener-

ated in a uniform manner, this time over a 3 dimensional box
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ix. the two array simulation were j rocessed as follows:

1. calculate the exact hydropnone times for the first

array using thE methods set forth in Ajpeadix A;
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2. add to the exact times some random error at the spec-

ified level;

3. Repeat steps 1 and 2 for the second array, usin a

new set of random error values;

4. apply each of the six methods to the time values from

both arrays, producing six differen: pairs of

apparent positions;

5. aiply the ray tracing procedure to bo-h aeparent

positions in each of the six pairs, utilizing the

known linear velocity profile, producing six pairs of

estimated sound source positions;

6. for each of the six pairs of positions, cilculatE the

distance between the two positions in the pair;

7. make pairwise comparisons of the six different

distances, to see which method in each pair exhibits

the closest agreement between its two position esti-

mates.

This time the ccmparison beiig made is tha: one method

is considered better than another if the psitions it

produces agree more closely more often than those of the

other method.

G. DCUBLE ARRAY SIMUIATION RESULTS

Tables IX and X contain the results of the I ouble array

simulaticn. Each tabled entry represents the fraction of

time that the method of that row produced a pair of esti-
mates which were in closer agreement than the estimates

produced by the method of that column. Significance

criteria for these propoctions are the same as for the

sinjie array simulaticn.

These results are similar to those of the s ingle arra:

simulation, because they indicate that:
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TABLE IX

Double Array Simulation Results
for Lower Error Levels

EPROF LEVEL ZERO

NAVY NAVYIA L.S. L.S.C. M.L.P. M.L.S.
NAVY .366 .989 .726 .968 .212

NAVY A .634 .989 .734 .968 .212

L.S. .011 .011 .011 .555 .014

L.S.C. .274 .266 .989 .968 .193

M.L.P. .032 .032 .445 .032 .033

.. s. .788 .788 .986 .807 .967

ERROR LEVEL LOW

NAVY NAVYA L.S. L.S.C. A. L.P .I L. S.

NAVY .448 .989 .661 .952 .310

NAVY A .552 .989 .684 .952 .312

L.S. .011 .011 .011 .560 .014

L.S.C. .339 .216 .989 .952 .254

M. L. P. .048 .048 .440 .048 .038

m.L.S. .690 .688 .986 .746 .962

1. the NAVYA method outperforms the original unadjusted

NAVY method, although the difference is not signifi-

cant in the higher error level cases; S

2. the most successful performer is consistently the

M.L.S. method;

3. spherizal methods almost always outper- orm planar

methods;

4. increased error levels tend to lessen the distinction

between methods.
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TABLE X I

Double Arra Simulation Results
for Higher Error Levels

ERROR LEVEL : MEDIJ
NAV Y N AVYA L.S. L.S.C. M.L.P. M. .

NAVY .498 .841 .513 .808 .443

NAVY A .532 .842 .542 .809 .40

L.S. .159 .158 .159 .525 .160 I

L.S.C. .487 .458 .841 .808 .433 I

M.1r. P. .192 . 191 .475 .192 .144

I .L.3. .557 .560 .840 .567 .856

I I

ERROR LEVEL : HIGH
INAVY NAVYA L.S. L.S.C. M.L.P. 3.L.S.

NAVY .487 .556 .535 .479 .442

NAVYA .513 .558 .499 .481 .440

L.S. .444 .442 .445 .451 .422 I

L.S.C. .465 .501 .555 .480 .438

M.L.P. .b21 .519 .549 .520 .428

,m..L.s. .558 .560 .578 .562 .572LI

There are however some indications from these results

which arE different from those of tne singie array simula-

tion, such as:

1. the worst performer was consistently the L.S. method,

rather than the M.L. P. method;

2. in the nigh error case the M.L.P. method Ls elual to,

or even marginally better than, every other method

except the M.L.S. method;
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3. the jerformance of the M.L.S. method ii noticeaLly

better under error free conditions.

The last two inferences are pernaps the most inter-

esting. The maximum likelihood approach was intended to

estimate and account for 3aussian errors in the timing data

values. Henze it is really not very surprisiig that the

M.L.S. method does well with error prone data. But it is

interesting to note that the M.L.P. method also does well

under high error levels, even though it probably suffers

from a bias due to the planar assumption.

Cf even greater interest is that the M.L.S. method seems

to Le at its best when compared to other methods under error

free conditions. This result was unexpected, and indicates

that the M.L.S. methcd not only handles timing errors well,

as was intended, but apparently also does an evei better job

of approximating the elusive exact solution to the original

four spherical euations of (4.1) and (2.1) when the exact

time values are available.

H. liMITATIONS ON INTERPRETATION OF RESULTS

The results of both simulations seem to im:ly that the

M.L.S. method outperforms the currently used NAVY A method

on any randomly chosen sound source position, with or

without timing errors. These are encouraging results.

Nevertheless the reader is cautioned that these tests are

just simulations, and like all simulations, must make

assumptions which cannot fully reflect the reali:y of actual

hydrophonic tracking conditions. The most important assump-

tions made for these simulations are:

1. the sound velccity profile is known exazr.ly, and is

linear;

2. the errors in the timing values from any aydrophone

are normally distributed with mean zero, and are

independent of the noise in any other hyd:ophone; and
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3. the parameters of the simulation were ixed; :oL

example the single array simulation used a fixed

range of 3000 feet, and both simulations used arrays

at 1300 feet cf depth, with fixed orienta: ions to the

range coordinate system.
The first assumption is probaDly of little -onsetuence.

It not only greatly facilitates computations, but also helps

to isolate the initial angle and time estimatLon problem

from the unrelated errors involved in the velocity crcfile

estimaticn jrocedure.

The second assumption is somewhat more troublesome.

Errors way not be Gaussian at all, or if they are, the mean

may not be zero. Unfortunately each positiol estimation

involved only four eguations, and therefore did not allow

for estimation of more than four paramenters. Tierefoze -he

error mean, being a fifth parameter, could not be estimated.

Also the errors of any ore hydrophone may very well not be

independent of the errors of the other three Lh) nes on that

array. Fortunately these concerns are offset somewhat by

the results of the double array simulation, wh.rein it was

found that the M.L.S. method was at its best wnen there was

no noise at all.

Also the error type and level may depeni on other

factors, such as the target's range, elevation and azimuth

angles from the array. This highlights the concerns of the

third assumjtion. There is considerable room here for

future work concerning the dependency of results on such

complicating factors.

Lastly it should be pointed out that the simulations

make comparisons only on the binomial basis of better versus

worse in 1000 trials. The magnitudes of the actual differ-

ences are ijnOred. It is possible, though perha.s unlikely,

that while one method marginally outperforms a second method

in most trials, in all the remaining trials the first method
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is much worse than thE second. here is also room here for

further work.
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VI. CONCLUSIONS AND RECOMdENDATIONS

A. ESTIMATION OF TIMING DATA VARIATION

One of the primary purposes of this study l as to esti-

mate the amount of variability in the timing data being

rezorded during actual tracking runs. This problem was

addressed by the M..P. and M.I.S. maximum likelihood

models. The M.L.P. model, as previously discussed, suffered

from a bias Tue to the planar assumption, was the poorest

estimator of positions among all the models, and produced an

inflated variance estimate. Therefore the spherical model

M.L.S. is used to estimate the data variance.

The variability that is measured by the M.L.S. model is

made ui of three components. First there is :he variance

induced by the spherical assumption. Then there is the

variance caused by the seven decimal accuracy used when

recording the data. Finally there are the errirs inherent

in the physical process, due to such factors as hydrchone

vaciability or malfunction, local distortions of the sound

wave, and inexactness of the water column which estimates

the speed of sound profile. The last two sour-.es of error

together make up the vaciazility that is involved in the

time values which are ultimately used in position estima-

tion, and is therefore the variation that is to be

est .mated.

if it is assumed that the variability indiced by the

spherical assumption is independent of the data variatility,

then the M.L.S. variance estimate is the sum of those two
S

variances, or

2 2 + 2
Umls (tL me
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Therefore the data variance can De estimated by first

estizating the variability induced by the szLerical assum E-

tion, and then subtracting it from the n.L.S. estimate of

the variation.

'he M.L.S. estimate was obtained by applying the :..S.
methcd to the data from a tracking run at the Narocse

torpedo tracking range on lay 6, 1980. That run invclvel

position estimation by several different hydrophone arrays.

The run made several thousand position estimates, 733 of

which were at depths of 100 feet or more and invclved

targets not more than 4700 feet from the sensing array. The

depth linitation was imEosed to avoid the excessive corjii-

cations caused by the radical changes in the velocity

profile above that depth (see figure 2. 1). The maximum
range lizitation imitates the data validation procedure at

the tracking range, where positions farther than 4700 feet

from the array are discarded.

The tracking data yielded the following range of esti-

mates for the standard deviation of the data noise, using

the M.L.S. model.

MAXIMUM VALUE 2.89 E-5 secs.

0.95 QUAN7ILE 1.18 E-5 secs.

MEDIAN VALUE 3.02 E-6 secs.

0.05 QUAN1ILE 4. 11 E-7 secs.

MINIMUM VALUE 3.13 E-8 secs.

For an overall estimate of the noise, the median value

* was usEd, so that:

rnls 3.02 E-6 )2

The variability induced by the spherical assumption was

estimated by applying the M.I.S. procedure to perfectly

noiseless data in the idealized environment of the single

array simulation of Chapter V. This was "one for targets at

ranges of 1500 to 450C feet, at 500 feet increments, with
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1000 randomely chosen targets at each range. The results

are collected in Table X!

TABLE XI

Inflation of Error Estimates Induced
by the Spherical Model

Standard Deviation Estimates from Exact Tim?. Values
with Known Linear Velocity ProfileI ANGE MIN I: UM Q (.05) AEDIAN Q (.95) iAA IMUM 1

1500 2.72E-10 2.84E-6 2.08E-7 3.13E-7 3.29E-7

2000 2.12E-9 5.88E-8 2.26E-7 3.14E-7 3.35E-7

2500 3.90E- 8 1.09E-7 2.34E-7 3. 14E-7 3.3 IE-7

3000 8.35E-8 1.50E-7 2.37E-7 3.15E-7 3.2 4E-7

3500 1.21E-7 1.59E-7 2.37E-7 3.13E-7 3.24E-7

4000 1.47E-7 1.65E-7 2.39B-7 3.16E-7 3.25E-7

4500 1.46E-7 1.69E-7 2.42E-7 3.14E-7 3.25E-7

Table XI shows that the median and maximun inflation

values are reasonably independent of target range. Ihe

minimum values vary somewhat, tat only for riLnge values

below 3000 feet. This represents a very stable situation

overall. Therefore the inflation due to the spherical

4 assumption is estimated by the median value at a range of

3000 feet, namely:

J2 = ( 2.37 B-7 )2sp h

Combining these two estimates, the varian.e estimated

foc the timing data is
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tiae mls sph

= ( 3.32 E-6 )2 - (2.37 E-7 )2

- ( 3.31 1 E-6 )2

As car. be seen, the error induced by the sph.arical model.

is less thar. 105 of the M.L.S. error estimate. :herefore

when it is accounted for by subtraction from the A.L.S.

variation estimate, the final variance estimite changes

little.

The estimated value indicates a standard error in the
6th decimal place. With a typical speed of sound value of

4880 feet per second, this represents a positi~n differen-

tial of about
4380 9 3.011E-6 = 0.015 feet

This estimate is quite low, indicating that the time values

being recorded are sufficiently accurate.

There is considerable opportunity for addi-ional work

determining the relationship, if any, between the time vari-

aLce and other factors such as anles of elevation and

azimuth of the target from the array.

There is also the problem that the time iariation is

likely to be array dependent. For example, consider figure

6.1 , wherein the standard error estimates from the actual

tracking run are plotted versus the range of the target.

The plot does not indicate that there is any simple rela-

tionship between range and error level. However the plot

does show a bunching pattern. When the error estimates are

plotted separately for each array, thien the bunzhing pattern

becomes clearly associated with the individual arrays.

Consider figures 5.2 and 6.3, where the separate plots have

been made for four different arrays. It is still not clear

from these slots whether the principle effect is due to the

individual arrays, or the ranges of the target3. However

some level of array dependency seems likely, indicating a

need for additional investigation.
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DATA FROM ALL ARRAYS

A
Ca- e I

S% . . .~

2000 3000 4000

I RANGE (FEET)

Figure 6.1 Error Estiaation Versus Range of Target.
C.I

B. CHOICE OF SETHOD

Clearly all indications are that the planir wavefront

models, L.S. and M.L.P. are not candidates for use as posi-

tion estimators. Furthermore the hybrid model L.S.C. is an

interesting improvement, but never really performs well

enough ccmpared to the M.L.S. and NAVY models.

The original NAVY model is usually outperfo'med by the p

adjusted NAVYA methcd. However the differences are not

always significant.

The spherical model M.L.5., on the other baid, consis-

tently outperformed all other methods during the simulated p

evaluations. it wculd seem that M.L.S. is t2e model of

choice. It ioes the best joL of handlin; normally distrib-

uted errors in the data. But that is not tie strongest

6v
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2000 5000 4000
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Figure 6.2 Error Estimation for Arrays 7 and 14.

78



cii
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Figure 6.3 Error Estimation for Arrays 56 and57
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aLument for its use. A more important, and surprising,

argument in its favor is that when the exact, error free

times are used, the M.L.S. a-parent position e3timate will

usually sroduce the most accurate estimate of the true

apParent position. This is the desired overall resul, s

that the sensitive ray tracing procedure will be af:ecteJ

minimally by apparent position estimation errors.

There are nevertheless several notes of caution which

should be considered before embracing the 11.L.S. method

wholeheartedly. The first caution has been stressed before,

namely that these conclusions were arrived at under the

idealized conditions of the simulations scenarios. Th-e

second caution, also previously stressed, is tha: the actual

magnitudes of the differences between position estimates has

been ignored. It is conceivable that while one metA~op

always produces a better estimate than another, the differ-

ence between any two position estimates is acceptably small.

Lastly there is the caution that the ..L.S. model

involves a complicated iterative procedure whicn uses

considerable computer time. It is probably too slow a

procedure for use with 'real time' analysis during the

execution of tracking runs. For real time tracking the

NAVYA method currently in use is probably preferratle due

to its simple computations.

However, for post run analysis, and also ?ossibly for

calibration of the hydrophone arrays, the M.L.S method is

a recommended as being a more exact and more robist position

estimator than those methods currently in use.

C. RECOMMENDATIONS FOR FUTURE INQUIRY

Several recommendatioins have already been mide for work

needed to estimate the effect of suitable independent vari-

ables on both timing errors and the bias in certain methods.
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In additici. there Exist at least two other areas ±or

possibly fruitful investigation.

The first area concerns the interplay Letwaen methods.

Specifically, the binomial coaparisons of C.apter V show

that even the worst methods are better than aach of the

other 2ethods at least part of the time. Hence it is

_ possible that the best method overall would be a suitazle

combination of methods, wherein each method is used where it

is most effective. For example, ever though the I.L.S.

method has been indicated as the best method for any

randomly selected position, it may be consisteitly outper-

formed by another method under certain circumstances, s ich

as extremely high or low elevation angles.

The second area for possible work addresses the guestion

* of how to next improve upon the existing modeLs. It is

herein suggested that the next improvement in modelling

would be a method which is based on a linear velocity

assumption. As figure 2.1 demonstrates, a linear veiocity-

profile is a reasonable approximation for most depths. This

would be the next logical step above the constant velocity

assumption which is associated with the spherical models.

Most of the mathematical basis for such a model in contained

in Appendix A. Possibly a suitable set of ejuations coull

he developed involving the hydrophone times and reflecting

the linear velocity assumption. If so, tiie least squares or

maximum likelihood techni 1ues might provide useful results.
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('I APPENDIX A
LINEAB VELOCITY PROFILE THEORY

All computations in this study are iade under the

assumption that the sound velocity is directly related to

depth in a linear manner, and is known exactly. Under these

circumstances many closed form results, not othe: wise avail-

able, can he obtained and used in those computations.

Suppose that the velocity profile is given b(

V = VO + 71 * z

where VO and VI are known co,.stants, and z i. the depth

variable, measured down from the water's surface. In this

case it is known [Ref. 4] that the path of a sol nd ray from

a signal source to a hydrophone will have the shape of an

arc of a circle. The center of that circle will be some-

where above the surface of the water. -he vertical place-

ment of that center is determined by tae value of z at whic

the speed of sound equals zero (see figure A.1). Although

that depth is negative and is not really a depth at all, it

nevertheless has eometric meaning.

0 Consider the vertical plane containing the circie

center, the sound source and the hydrophone. .et h be the

variable which measures the horizontal position in that

plane. Let (h,z)=(al,a2) be the position of the hydrophone,

and let (h,z)= (pl,p2) be the position of the sound source.

Th.en C2 given by (A.1) is the Z coordinate of the circle

center. -v0

* vI (A.1)

What must be found is :1, the a cooriinate o: the circle

center, and r, the radius 3.f the circle. To solve for t.iese

values, the eguation of the circle is used, evaliated at tae

the two known locaticns, yielding (A.2).
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Figure A. s Circular Ray Paths for a Linear Velocity Profile.

WE-

2 21 l _ C +- ('2 _ 2 ) =

(A.2)

(P] C1 + P, C2 r 2

The left hand sides of the two ejuain o(A. 2) car, be

e ,uatEd, and solved for C1, leading to (A. 3) .

C1 , + q, ( + a2l 2 (A.3)

2 ~z

eiuation of (A.2), then the result is given by (A.4).
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r =- ), + (a 2  
(A 4

The circular arcle.ngth between the hydroph) re and the

sound source is easily computed. Unfortunately the velccity

of sound does not stay constant along that arc. Therefore

in order to determine the amount of time (T) :eguired for

the sound ray to travel the ray pata, the effect of the

velocity must be integrated along the arc. This is dcne by

(A.5) , where S is the arclength between the two points, and

V(s) is the speed of sound as a function of posL ticn on the

arc.

(A .5)
0

In (A.5) the sound source position corresponds to an

arclength of s = 0, and the hydrophone position correponds

to arclength s = S. In [Ref. 4] this integral is shown to

be equivalent to (A.6).

C A
T - I.1 da (A.6)

V coska)

0

In (A.6) AO is the angle of elevation of the ray path at

the scund source, and Al is the elevation algle at the

hydrolhone. The antiderivative in (A.7) can be used to

solve (A.6), leading to the ray path transit time expression

in (A.8).

f da 1 (1 + sin(a(A.\costa) = costa) (A.7)

C COS(A '1+ siri(AT - Z (A.8)
V1 cos(A 0  \ + sin(A ]

84

* p? :



If the elevation anjle at any point along the arc is

denoted ty A, then (A.9) relates tze angle to th! derivative

of z with respect to h along the ray path.

tan (A) (A .9)

Iralicit differentiation of the eiuation of the circle

yields (A. 10) as another expression for tae same derivative.
h - f

dz I

dn z 2 (A.10)

Equating these two derivatives leads to (I. 11) which

relates the elevation an le and the position (h,z) on the

arc.
h- C1

tan (A ) -
- (A. 11,)

From (A.11) a simple geometric argument ?roduces the

equations in (A. 12) .

z - cl h - c
cos (A) = sin (A) = (A. 12)

rr

First let A, h and z be equal to (A1,al,a2) in (A.12),

and then let them equal (AO,pl,p2). Then substitute both

expressions into (A.8). The result is (A.13), the desired

expression for the ray path transit time in tarms of the

positicns of the sound source and the hydrophone.

T in (A. 13)
V1 L\22/\11/Jl C

To summarize, if a ray path is to terminate i t the three

4 dimensional position (X1,Y1 ,Z1), and the sound source is at

(X2,Y2,Z2), then perform the following steps in order to

calculate the exact ray path time and elevatioi angle that

would correspond to a linear velocity profile:

*]
1
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1. use (A. 14) to translate the tnree dimensional posi-

tions to the two dimensional coordinates of the

previously described vertical plane, with the origin

at the water surface directly above the end of the

ray path;

P1  = (X1  - X2 ) 2  + (Y -Y 2 ) 2  (A. 14)

P = Z = 0 a 2  = 2

2. calculate C2, C1 and r using (A. 1), (A.3), and (A. 4);

3. calculate the exact ray path transit time T using

(A. 13) ; and

4. calculate the exact elevation angle A at the hydro-

Fhone, using (A.15).

A arccos (A. 15)

0
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APPENDIX B

PARTIAL DERIVATIVE FORMULAE FOR NEWTON'S METHOL

The central tool used by Newton's lethod in the develop-

ment of the M.L.S. model in Chapter IV is the matrix GP. It

is the matrix of first order derivatives of the error

expressicns 1, g2, g3 and g4. Those derivat, yes are set

forth in this appendix.

If X = (CI,C2,C3,U), then the error functions are

defined by (B. 1)

Ti -

g = C i = 1,2,3 (B.1)
-- i i M

T - D M / V
= u-

1 - N

where the values Ki, M and N are the functiois given by

(B. 2).

2 D 2

22
K = U - ( 2UDCi/V ) + -- (B.2)

1 V.2

N = C

3 Tj - j
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Recall that GP is the matrix shown in (B.3)

~1 ~2 3 ~4

GP (CI,CC U) =

3 p2 %3 *4

-8 C4  a g4 ag4  a Ij~
bc1  b 2 %C 3

Then given the definitions above, the folloiing deriva-

tives are the result of straight forward, though tedious,

differentiati3n, and are offerred without detail-d proof.

LEMMA 1

V K. (T. - K. ) + C.T.U D
b 1 1 i = 1,2,3 (3.)

LEMMA 2

3+4 C. C - V U) (B.5
V K

LEMMA 3

T. U D
i 1 = 1,2,3 (B.6)

*~ci V K.~F

LEMMA 4

3 T. (DC - V U)
b_ _-/. ? i (B.7)

:I J v. J
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FCEMULA 1

The first three diagonal -elements ofL' GP are te deriva-
tives of each gi with reseect to Ci (i=1,2,3) ai d are given

by (B.8).

r UDM- VK.(T. - K (B8)agi 1- i( 8
-- = -V M K K

FCRiULA 2

The off diagonal elements in the fizst three rows and

columns of GP are the derivatives of each gi witft respect to

Cj, and are given by (B.9).

ag_ Ti ) M i = 1,2,3 ("9)
S M2 . j = 1,2,3

j i

FCRMUIA 3

The derivative of each gi with respect to U is given by

(B. 10).

T.M(VU - DC.) + VK. (T. - ) (B.10)
g) U

V M~ K -/T

FORMULA 4

The first three elements of the last row of GP arE the

derivatives of g4 with respect to each Ci, and i re given by

(B .1 1).

(VT -DM~) - . - (1-N)a9-c ac i  (B. 11 )
I -C.--D.11

a i V (i - N)

89



FORMUIA 5
The last row, last COlUMr. Of 3P is the derivative of g4~

W with rezpect to U, amd is given by (B.12).

4V P -I4 D.M) D 14) (.12)

uV (1I N

49



APPENDIX C

UNIFORM SAMPIES ON A TRUNCATED HEMISPHERE

The single array simulation of Chapter V reguired a

random sample of positions in space uniformly distributed

. over the surface of a truncated hemisphere. Th? hemisphere

is tc be of radius r (3000 feet) aboat the acoustic center

of a hydrophonic array. The truncation of the overall

sphere is due to the fact that the upper portion of the

hemisphere is above the water surface, and the lower half is

telow the sea bottom.

w = dH rr r coS (E)

w r cos(E) dH

Figure C.1 Hemispherical Geometry.

Let E be the variable denoting anjles of eleration above
0 the horizontal. Let H be the variable denoting horizontal

azimuth angles atout the center of the hemisphere. Consider

a small piece of hemispherical surface area bounded by the

91
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elevation angles El and (El+dE), and by the azimuth angles

H1 and (Hi+dh) (see figure C.1). If W is the horizontal

width of that piece, then W is given by (C.1).

w = r I dH = r cos (E) dH (C.I)

If Al is the area of that piece, then Al is ipproximated

by (C.2).

A w dE = r cos(E) dH dE (C.2)

Now suppose that ( 3 < El < E2 < Emix ) where

Emax is the elevaticn angle of the top of tne truncated

hemishpere. Then the ratio (Al/A2) of two different areas

at elevation angles El and E2 is given by (C. 3)

A r cos(-7) dH dE cos(E,)

A r cos(E 2 ) dH dE cos E 2 ) (C.3)
2 2 2

If n1 and n2 are to be the (relative) samplB sizes from

the two areas Al and A2 respectively, then uniformity of the

sample requires that (C.4) hold.

= A2 /n 2  (C.4)

The combination of (C.4) and (C.3) implies ( .5) .

cos (E)
2cos(E) (C .)

Letting El = 0, then the relative sample 3ize n2 for

area A2 is given by (C.6), where n is the relative sample

size at the base of the hemisphere.

n = n cos(E,) (C.6)

Now the differential probability of drawiig a random

position that has elevation angle E is given by (C.7), where
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N is the total sample size to be Jrawn from the suriac- oz,

the sector bounded by the azinuth angles Hi and ( H1+dH)
n.n

f (E) - - -- cos(E) (C.7)
E

Therefore, if K is defined to ze the constan: ratio n/N,

then the corresponding cumulative distribution is given by

(C. 8)

F,(E) K cos(e) de = K sin(E)
Jo (c- .C8)

For the higLest elevation angle, Emax, th. cumulative

distribution function must equal one, so that (c.9) holds.

FE(E max K sin(Emax (C.9)

As a result, the constant K is determir.ed by (C.10).

K 1
sin(E ) (C. 10)max°

Therefore the coEplete cumulative distributL on function

is given by (C.11).

,(E) = sin(E)F" (B s= ( (C. 11 )
inEmax

Now the inverse Erobability transform can be used. :f U

is a uniform random variable on the interval (0, 1), then let

E be given by (C.12).

E = arcsin ((C.U 1
s n (E ) (C. 12)

Now choose an azimuth angle H randomely ai d uniformly

over the interval (0,2T). Then (X,Y,Z) given by

X = r c s(H) cos(E)

Y = r sin((H) cos (E)

Z = r sin(E)

93
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is the corres ponding :osi tion in spher icai :oorJinat Es.

That position is a random position irawn from a po~uldtion

of positions uniformlyv distributed across the sirface of a

truncated hemis phere with maximum elevation angie Emax.

.i
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APPENDIX D

SINGLE ARRAY SIMUIATICN COMPUTER PROGREN

C THIS FORTRAN PROGRAM SELECTS A RANDOMI SAMP. E OF
C SIZE M OF 3-DIMENSIONAL POSITIONS ALL AT A RA'jGE
C OF F FEET FROM THE ACOUSTIC CENTER OF A HYDROPHOIC
C ARRAY. THE ARIS OF THE ARRAY ARE ASSUMED TO BE
C ALIGNED WITH THE COORDINATE SYSTEM OF THE RANGE.
C AND IS IN A POSITION GIVEN BY THE VECTOR A.
C
c THE SPEED OF SOUND PROFILE I3 ASSUMED LIIE\ Rl
C GIVEN BY V = VV(1) + VV(2) * DEPT .
C
C FOE EACH OF THE PCS1IONS SELECTED EXACT Hf DRCPHONE
C 7IMES ARE CALCULATED USING THE SUBROUTINE ICOMP A'
C RANDCM ERRORS ARE ADDED TO THE vXACT TIAES. TH
C ERROR DISTRIBUTION IS NORMAL, WITH MEAN ZERO AND
C STANDARD DEVIATION SDEV.
C
C THE TIME VALUES ARE THEN USED TO ESTIMATE k N APPARENT
C POSITION BY TWO DIFFERENT METHODS, USING APPRORIA:-

* C SUBROUTINES. THE RESULTING APPARENT POSITIONS ARE
C THEN PROCESSED BY THE SUBROUTINE TRACE TO OBTAIN
C THE CORRESPONDING ACTUAL POSITION ESTIMATES. THE
C RESULTING POSITION ESTIMATES ARE THEN COLPAEED TO THE
C CRIGINAL TRUE ECSITION TO SEE WHICH METHOD PROEUCED
C THE MOST ACCURATE ESTIMATE.
C
C THIS IS DONE FOR ALL POSSIBLE PAIRS OF THE

a C SIX METHODS.C
INTEGER MIJ, NET MET EMEHIETH2 NYES NYEST,NNOISE
DIMENSION' REL (1606) RA (100O) STUFF400 6 )
DOUBLE PRECISICN P 03),A(s) VV [z) ,T (100 
DOUBLE PRECISION VAR ( 10601 Td500 L/4 ,NROISE PLACT
DOUBLE PRECISION TEST 1000) ,PT(1006 3).DIF (10)
DOUBLE PRECISICN DIFT 1000),AC(3)C (I0

*] DOUBLE PRECISION R,Z, SDEV,PI,AZ (500 ,EL (00
DOUBLE PRECISICN V,FKTHI,PHIMA.',SEED,PE T(1000 ,3)C

C SET INITIAL VALUES OF SAMPLE SIZE, RANGE,
C AND ERRO. STANDARD DEVIATION
C

m = 1000
R = 3000.DO

* SDEV = 3.464D-5
1 FCRfLtAT(2X ' NOISE STD. DEV. = ',F10.10)

WRITE (61SD EV
WRITE (6 99)
SEED = 7319.ODO
PI = 2.DO*DAP.COS(O.DO)C

C SET ARRAY POSITION AND LINEAR PROFILE
* C FOR SPEED OF SCUND.

C
All = 0.DO
A(2) = 0.00O

3= 1300..0
A = fll +15.0

A ! = A 3  + 15.0
AC (3) A - 15.0
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VV(1 il =4840 7B0
VV 2= 33 14. D-5
V V (1 +VV (2) *A (3)

C
C SET UPPER LIMIT ON ELEVATION ANGLE, IF NEC: SSAEL
C

I R (. GT . A (31)G700
~HIMAX = 1.25660 1

GO TO 2 0
10 PHIMAX = DARSIN (A (3) /R)C

C GENEFATE RANDOM VALUES FCR ANGLES OF
C ELEVATION AND AZIMUTH.
C

20 FK = 1.DO/DSIN (PHI:lAX)
CALL GGUBS (SEErE,M,RAZ)
CALL GGUBS (SEED,M,&EL)

C
C CCNVERT ANGLES TO 3-D COORDINATES
C

DO 11 I - 1,9
EL (I) = REL (I)
AZ I) = RAZ(I)
PHI = DARSIN(EL (I)/FK)
P(1,1) = R*DCOS PH I)*DCOS (AZ (I) * P I *2.DO
P(1,2) = F*ECOS (PHI) *DSIN AL I *PI*2.DO)
P 1,3) = A (3)-R*DS IN (PHI)

11 CONTINUE
C
C COMPUTE EXACT HYDEOPHONE TIMES UNDER THE LENEAR
C VELOCITY PROFIIE ASSUMPTION.
C

CALL TCOMP (P AC, MVV, TC)
CALL :C0MP ( M,A, VV, T)

C
C GENERATE AND ADD ERRORS TO TIHES.a C

NNOISE = 4*M
100 CALL GGNML (SEED,NNOISE,STUFF)

K=1
DO 111 I = I,M

DO 122 J = 1 4
NOISE = SlUFF(K)
NOISE = NOISE SEV
TN(I J) = T(I,J)+NOISE
K = k 1

122 CONTINUE
111 CONTINUE

C
331 FORMAT(2X.' ( SAMPLE SIZE = 'Ii,' )')

WRITE (6,361) M
WRITE (6, 999)

* C
C T'270 CUTER LOOPS RUN THROUGH ALL PAIRS OF TI E SIX
C PCSSIELE POSITICN ESTIMAIING ilETHODS.
C

DO 1111 METHI = 1,5
KMETH = METHI + 1

DO 1222 METH2 = KMEIH 6
IF (METHI .EQ. METH2) GO TO 1222

* C
C

200 FORMAT (2X 'METHCDS USED ARE :)
WRITE (6, 260)
METH = METHI
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C CALL SUBROUTINES TO IMPLEMENT THE METHODSC
13  H.NE. 1) GO TO 131

-1 All POSNAV (TN,V, M,PEST,T-tSr)
201 FOFMAT.X ' NAA, UNCORRE: TED')

WRITE (6 20)
GO TO ISO

131 IF MEH 2) GO TO 132
CALL POSNVC (TNV, M,PEST,TEST)

202 FORMAT 2X UNAY, CORRECTED')WRITE (6 262)
GO TO 10

132 IF (METH .NE. 3) GO TO 133
CALL POSLS (TN V M,PES TEST)203 FORMAT (1X 'LIZA TSQU S CRE
WRITE(6 2035
GC TO 1S0

133 IF 1M0ETH NE 4) GO TO 134CAL PSLSC (TNV, M,PEST.TESTL
204 FORMAT(18X,'EAT SQUARE CORECTED')

WRITE (6 204)
GO TO 1SO

134 IF (METH E. 5) GO TO 1E35
C IL POSMLP TN,V PESTTEST,VAR)

2C5 FORA 18N'RAX. LIKEIHOOD, PLANAR'
WRITE (6 205)
GO TO 1,M4135 IF (METH .NE. 6) GO TO 136 .
PAL SmLS TN,V MPEST.TESTVAR206 FORMAT 18X.'AAX. LIKEIHOOD, PHERICAL'
WRITE( PE20t)GO TO 150

136 WRITES6 137 METH ,METH2137 FO RM AT 2 tANS FIN-D METHODS ',14,1 AND/OR 1,14)
GO C O R0PO N L T

C
C THE APPARENT POSITION ESTIMATES ARE LATIVE TO
C THE ARRAY CENTER, AND MUST BE TRANSLATED TO
C 7HE TRACKING RANGE COORDINATE SYSTEM.
C
150 DO 1451 =1m

PES (I, = PEST ,2
PESF(I) = A(3)+-PT(I,3

144 CONTINUE
C CCNVEET APPARENT POSITIONS TO ACTUAL ESTIMITES BY
C 1 AY TRACING PRCCEDURE.C

CALL TRACE (PEST,PT, TEST,A,M, VV)
C
C CALCULATE DIFFERENCE BETWEEN THE 1ST POSITION
C ESTIIMATE AND THE TRJE POSITION.
C

IF ( METH .NE. METHI ) GO TO 160
DO 155 1 = 1,M

DIF 411 = O.DO

*D F

D1FT1) = DABS (TEST (I)-17C (1,4)

156 CONTIN E
155 COliTINUE
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C
METH : 1ETH2
GO TO 130

C
C CALCULATE DIFFERENCE B7TWEEN THE 2ND POSITIONC C ESTIMATE AND ThE TRUE POSITION, AND COMPARE IT
C TO THE 1ST POSITION DIFFERENCE.
160 NYES = 0

NYEST = 0

DO 166 I = 1,M
DO 167 J = 1 3

DIF I) = (I)-(PT(iJ)-P(1,J))**2
167 CONTINUE

DIFT(I = DIFT(I) - DABS (TEST(I)-TC(I,4))
IF i DIFT(I) .T. O. DO ) GO TO 165

NYEST = NYEST + I
165 IF 4 DIF(I) .GT. ).DO ) GO 70 166

ES YES + 1
166 CCNTINUE

C
FEACT = (DFLOAT NYES)/DFLOAT(ML)

300 FOEMAT (2X, FRATION OF TIME MzIHOD #1 IS "LOSER')
333 FOE IAT (2Xf' IN POSITION 1,F7 31332 FOEMAT{2X ' IN TI ME . ',F7"3

W 360)
WRITE (6,303) FRACT
FRACT = 4DFLOATNYEST)/DFLOAT (Mi))
WRITE 16,302) FRACT
WRITE (6,999
WRITE 6, 998)
WRITE (6,999

C
1222 CONTINUE
1111 CCNTINUE

C993 FOEMATX '===--------------- ')999 FORMAT (2 X,' )

1000 SlOP
EN4D

98



APPENDIX E

DOUBLE ARRAY SIMg1ATICN COMPUTER PROGRIM

C THIS FORTRAN PROGEA9 SELECTS A RANDOM SAMP'E OF
C SIZE M OF 3-DIMENSIONAL POSITIONS IN A BOX RUNNING
C CROSSWAYS BETWEEN TWO HYDROPHONIC ARRAYS. THE BOX
C HAS DIMENSIONS GIVEN BY THE VECTOR BOX. THE ARRAYS
C ARE SEPERATED BY 7500 FEET AND HAVE COORDINATES
C GIVEN BY THE VECTORS Al AND A2. THE ARMS )F THE
C ARRAYS ARE ALIGNEZ WITH THE RANGE COORDINATE SYSTEM.
C
C THE SPEED OF SCOUND PROFILE IS ASSUMED TO BE LINEAR,
C AND IS GIVEN BY V = VV(l) + VV(2)4DEPTH
C
C FOR EACH OF THE POSITIONS SELE:TED EXACT rIME VALUES
C FCE SCUND WAVE ARRIVAL AT THE HYDR6OHONES Oi EACH
C ARRAY ARE COMPUTED BY THE SUBROUTINE TCOMP. THEN
C RANDCM ERRORS AEE ADDED TO ALL TIMES. THE ERROR
C DISTRIBUTION IS NORMAL, WITH MEAN ZERO AND STANDARD
C DEVIATION SDEV.
C
C THE TIME VALUES ARE THEN USED TO ESTIMATE IPPARENT
C POSITIONS BY TWO DIFFERENT METHODS, USING THE
C APPROPRIATE SUBROUTINES. EACH SETHOD PRODUCES TWO
C DIFFEFENT ESTIMATES ONE FOR EACH ARRAY. THE APPARENT
C POSITIONS ARE THEN TRANSLATED TO ACTUAL POSITION
C ESTIMATES BY THE SUEROUTINE TRACE. THEN !HE LENGTH
C CF THE DIFFERENCE VECTOR FOR EACH METHOD IS COMPUTED.
C THE TVO DIFFERENCE LENGTHS ARE COMPARED TO SEE WHICH
C METHOD PRODUCES POSITION PAIRS IN CLOSEST AGREEMENT.
C
C THIS COMPARISON IS DONE FOP ALL POSSIBLE P1IRS OF
C THE SIX METHODS.
C

INTEGER I,I,J,K,METH,.iETH1,.IETH2,NYES,NNOI3E,NARRAY
C

DIMENSION RP (1000) ,STUFF (4000),NAll (6), NAM2 (6)

DOUBLE PRECISICN A1(3) A2(3 TIsooo,4) ,T2( 1000,4)
DOUBLE PRECISICN VAR C1600o IS- FRACT, YZ DEPTH
DOUBLE PRECISICN TEST (I00OPI(1003 , P2j1000,)
DOUBLE PRECISION SDEV ,SEED,3OX 3) ,PEST10J0,3) ,A(3)
DOUBLE PRECISICN T(1300,4),V, V (2) ,DIF(1000)

C
D AA NAM1 1 NAM1 2 NAMi (3) /'NAVY' 'NAVY', 'LS./
DATA NAMJ NAM1 NAMI 6/.S.IOM.L.tM.L'/
DATA NAM12 1 NA12 2 NAM2 L3 /' '"CORDATA NAM2 NAM2 5 NAM2 /'CORR', 'PLNE', 'SPh'/

C
C INITIALIZE VALUES FOR SAMPLE SIZE, RANGE, DEPTH
C AND ERROR STANDARD DEVIATION.
C

M = 1000
SDEV = 3.464D-5
DEPTH = 1300.DO
FORMAT(2X ' NOISE SID. DEV. = ',F15.10)
WRITE (6,1 SDEV
WRITE (6 999)
SEED = 9347.6D0

C
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C SET UP ARRAY POSITIONS, AND SOUND VELOCITY PROFILE
C

Al 2 3 .DO
Al DEPTH
A2 1 3750.D0
A2 O.DO
A2 DEPTH
VV 1 4840.7DO
VV 2 3314.D-5
v 7 (1 + VV (2) *DEPTHC

33 FOFMA(2X,' M SANPLE SIZE = 'I ,. '
WRITE (6, 3
WRITE (6,99 )

C
C DRAW UNDERWATER BOX FOR RANDOM POSITIONS
C

BOX 2 = 5000. DO
BOX 3 = DEPTHC

C GENERATE RANDOM POSITIONS IN BOX
C

DO 11 J = 1 2
CALL GGUS (SEEDMRP)
DO 22 I =1 M

XYZ = RP (1)
P1 IJ) = (XYZ- o. 50Oo *BOX (J)

22 CONTI UE
11 CONTINUE

CALL GGZJBS(SEED,M,RP)
DO 33 I = I, MXYZ =RP(I

P33 3) =IYZ*BOX(3)33 CONTINUH
C
C CCMPUTE EXACT HYDROPHONE ARRIVAL TIMES, AND ADD
C RANDOM ERRORS TO TIME VALUES.
C

NNOISE = M*4
CALL TCOMP(P IAl,M VV Ti)
CALL GGNML (SfEDN§OIH~,STUFF)K = 1A
DO 44 i = 1,MDO 45 1 4

NOISE = HUFF(K)
NOISE = NOISE*S EV
Ti (13J) = T1 (I,J) + NOISE
K = A+I

45 CONTINUE
44 CCNTINUE* C

CALL TCOM P (P1 A2,M VV T2
CALL GGNML (S Er, NOIE,bTUFF)K = 1
DO 55 I = I,M

DO 56 J =1
NOISE = UFF(K)NOISE =NCISE*SDEV

*T2(I,J) =T2 (I, J) + NOI SE
K = l

5o CONTINUE
55 CONTINUE

C

100
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C SET UP LOOPS TC RUN THRGU3H ALL PAIRS OF M1IHODS.
C

DO 11 11 "ETH1 = 1 5
KMETH = METH +1 1

DO 1222 METH2 = KMEIH, 6
iF (1ETH1 .EQ. METH2) GO TO 1222

C
13 FOEMAT (2X,'METHCDS COMPARED ARE 1. ',A4,2X,A41)
23 FOEMAT2X 6 I AND 2. ,A4,2X,A4,

WRITE (6, NAi METH) ,NAM2 MEdI)
WRITE (6,20 NAkI ;METH2 NAM2METH)
WRiTE (6,999)

MIETH = METHi
NAFRAY = 1

C
C SET UP ARRAY BEING USED
C
125 A (1) Al 1)BA A2 112)

DC 66 i = 1,M
DO 67 J = 1,4

T1I J) = Ti (I,J)
67 CONT HE
66 CCNTINUE

C
C CALL SUBROUTINES TO PERFCRM ES:'IMATION METiODS.

130 IF (METH .NE. 1) GO TO 131
CAIL POSNAV (T,V,M,PEST,TESI)
GO TJ 150

131 IF (METH .NE. 2) GO TO 132
CALL POSNVC (,V,M,PEST, TEST)
GO TO 150

132 IF ( METH .NE 3) GO TO 133
CALL POSLS(,V,1,PEST,TEST)
GO TO 150

133 IF (METH .NE. 4) GO TO 134
CALL POSLSC (T,V, ,PEST,TEST)
GO TO 150

134 IF (METH .SE. 5) GO TO 135
CALL POSMLP (T,V,M,PEST, TESIVAR)
GO TO 150

135 IF H = NE. 6) GO TO 136
CALL POSmLS (T,V,M ,PEST, TEST,VAR)
GO TO 150

136 WRITE(6 137) METH ME-H2
137 FORMA (2X6'CANT FIND METHODS ',14,' AND/OR ',14)

GO TO 1000C
150 IF ( NARRAY .EQ. 2 ) GO TO 152

C
C APPARENT POSITIXN ESTIMATES AhE IN LOCAL AIRAY
C COORDINATES AND iUST BE TEA:ISLATED TO TRACKING
C RANGZ SYSTEh CCORDINATES.
C

DO 144 I = Im
PEST,(, 1) = PESTCI,) Al i,)
PEST (1,2) = PEST (1,2 + Al 2)
PEST I,3) = A1(3) I-2EST(I,3

144 CONTINUE
C
C CORRECT APPARENT POSITIONS BY RAY TRACING.
C

CALL TRACE (PEST,P1,TESTA,M,VV)
C
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C GO CN TO SECONT ARRAY
C

NAFRAY = 2
Al
A 2 = A23

D 7 1= m,
DO 78 J 1 14DT(i, J) == '12 (1, J)I

78 CONT NUE )

77 CONTINUE
GO TO 130C

C TRANSLATE 2ND ARRAY APPARENT POSITIONS TO 1 ANGE
C COCEDINATE SYSTEM, AND THEN RAY TRACE.
C
152 DO 145 I =Im

PESTJ (,1 = PEST I,Ij +, A2(1
PEST (1,21 EST(I 2 + A2
PEST 1,3) A2(3) - PEST(1,3

145 CCNTINUE
C

CAlL TRACE (PEST,P2,TEST,A,M,VV)
C
C CCMPUTE DIFFERENCE VECTORS FOR 1ST .M'!THCD
C

IF ( METSH .NE. IMETH1 ) GO TO 160
DO 155 I = 1,M
DIEI) = O.DO
DO 156 J =13
1DODI~FdI ==I 1F(I)+(P1(I,J)-P2(I,J))**2156 CONTINU

155 CONTINUE
C
C GO CN TO SECOND METHOD
C

MET = METH2
NARRAY = 1
GO TO 125

C
c CC PUTE DIFFERENCE VECTORS FOR 2ND METHOD IND
C COMPARE TO DIFFERENCES FOR 1ST METHOD.
C
160 NYES = 0

DO 166 I = 1,M
DO 167 J 1 3

DIF (I) == IF( I)-(P(I,J)-?2(I,J))**2
167 CONTINUE

IF j DIF(I) .GT. O.DO ) GO TO 166
NYES = YES ; 1

166 CCNTINUEC
WRITE (6, 999)
FRACT = (DFLOA NYES) /DFLOAT ()

300 FORMAT(2 ,' FRACTION OF TIME) OD #1310 FORMAT(2 ' IS BETTER IS ',F7.3
WRITE (6,360)
WRITE 6, 10) FRACT
WRITE 6, 999
WRITE (6,998)
WRITE (6, 999)

C
1222 CONTINUT
1111 CCNTINUE

C
998 FOEMATJX,' -')
999 FJFl AT ;' ')

10)00 STOP
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APPENDIX F

COMPUTER SUBROUTINES FOR TIME CALCULATION AID RAYTRACING

C SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS SSSSSSSSS
C

SUBROUTINE TCOP (P,A,, VVT)
C
C THIS FORTRAN SUBROUTINE COMPUTES THE EXACT TIME
C REQUIRED FOR A SOUND WAVE TO TRAVEL FROm irs
C SOURCE (VECTOR P) TO THE FOUR HYDROPHONES ON AN
C ARRAY WiOSE ACOUSTIz CENTER IS SPECIFIED BY
C VECTOR A.
C
C THE METHODOLOGY USED IS SET FORTH IN APPENDIX A
C OF THE THESIS. THE BASIC ASSUMPTION IS ONE OF
C A LINEAR VELOCITY PROFILE, iHOSE COEFFICIENTS ARE
C GIVEN BY THE VECTOR VV.
C

INTEGER M I J
DOUBLE RCSICN P (1000 , 3)VV 2 T 1) 00,4)
DOUBLE PRECISICN AA (4,3f, 1, 2, C C2

C
C SET UP COORDINATES OF FOUR HYDROPHONES ON THE ARRAY
C

DO 11 I = 1,4
DO 22 J = 1,3

AA I J) =-15.DO + A(J)22 CONTI UE *
AA (I3) = 15.DO + A(3)

11 CONTI NU
AA (1, 1) = 15.DO++
AA 2,2 = 15. DO + A 2
AA 3,3 = -15.DO +A

C
C CALCULATE QUANTITIES Cl, C2, R, AND THE TIES T(*,4)
C

C2 -. DO*(VV (1)/VV(2))
C
C IOCP THROUGH THE M SOURCE LOCATIONS

DO 33 I = 1,M
P2 = P(1, 3)

C LOOP THROUGH THE FOUR HYDaOPHONES FOR EICH SOUPCE
DO 44 J = 14

P+ )-A )) **2)

CI = P**2+P2**2-AI (J,3)** 
+2.DO *C2* (AA (J, 3) -P2)

Cl = C1/(2.DO*P1)
R(= DSQRI C1**2+ AA 3 3) -C2)** 2)

(DLOGJ)=(A ( ) }

T I J) = (D LOG(T (I,J)) )/V(2)
44 CONTINUE
33 CCNTINUE

C
FETURN
END

C

10
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C SS.35S5ssSSSSSSSS SSSsSSSS SSSSSSSSSSSSS3SSSSSSSSSSS SSSS
C

SUBROUTINE TRACE (P,PT,TA,I,VV)
C
C THIS FOF.TPAN SUEROUTINE TAKES AN APPAENT POSITIONC ESTIMATE P AND CONVERTS IT TO AN ACTUAL POSITICN
C ESTIMATE PT BY RAY TRACING. THE RAY TRACING ASSUMES
C A LIIEAR VELOCITY PROFILE WITH COEFFICIENTS IN THE
C V7CTOE VV. OTHER INPUTS IRE THE ARRAY LOCATION
C VECTOR A AND THE RAY TRANSIT TIM1E TO TH' ACOUSTIC
C C'NT :. THE RAY TRACING LAYERS AFE DEL FEET THICK
C WITH TAiE 'FIRST (BOTTOM) LAYER BEING THE F11ST DEL
C FEET IMMEDIATELY ABOVE THE ARRAY.
C
C

INTEGER M I
DOUBLE PREfISICN T(1000) .( 100 ,3),PT 1000, 3),A(3)
DOUBLE PRECISION DEL HS ,CA,DEPTH ,V, V,VV(2)
DOUBLE PRECISION DS,DTD,DHC
DEL = 25.DO

C
C LOOP THROUGH THE 3 APPARENT POSITIONS
C

DO 11 I - 1 M
C INITIALIE INCREMENTAI VALUES FOE EACH ?OSITION

H =DSQRT (PJI 1 -A(1}) **2+JP(I 21-A (2)i **2)
CA = DS T H* + 3) -A(3) 2)
DT O.DO
DZ = O.DO
DH = O.DO
DEPTH = A(3 )-DEL/2.DO
V = Vv(1) +V(2)*DEPTH

C INNER LOOP : PECCESS DATA UPWARDS LAYER Bf LAYER,
C UNTIL RAY TRANSIT TIME IS EXHAUSTED
C

10 SA = DSQRT (.DO-C,**2)
DZ = DZ +D ET
DS = DEL/SA
DT = DT + DS/V
DH = DH + DS*CA

C
IF ( DT .GT. T (Ib GO TO 20
DEPTH = DEPTH -D~
Vl = VV(l) + VV(2) *DEPTH
CA = CA* /V)
V = V
GO TO 10

C
C ADJUST FOE OVERSHOOTING IN LAST LAYER
C

20 DS = V* (DT-7 (Ip)
DH = DH - CA*D

C
C ADJUST APPARENT POSITION TO GET ACTUAL POSITION
C

P T(I1 = (P1)1 A(11))* D HI/H + A (1)

C ~ Pr PI2~ P 1:2 -A A2 *DH/H) +A (2)

11 CCNTINUE
FETURN
END
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APPENDIX G

COMPUTER SUJBROUTINES FOR POSITION ESTIMATION METHODS

C SSSSSS.SSSSSSSSS SSSSS SSSS SSSSSSSSSSSSSSSSSS SSSS SSSS3SSZSS
C

S UEECOUT"INE POSNAV (T,V,tiV?,NIT)

INTZGEE M , I

C T'IlS FORTRAN SUBROUTINE IMPLEMENTS THE ORI; INAL
C UNADJJSTED NAVY APPARENT POSITION ESTI3ATION ME:-HCD.
C
C IliUT ARE THE HYDROPHONE TIMES T FOR M SJUI D SCUFC-:
C POSITIONS, AND VELOCITY V AT THE ARRAY.
C
C OUrj2UT ARE M APPARENT POSITION ESTINATES 2 ALONG ::
C THE CORRESPONDIN~G M PAY TRANSIT TI !ES 'IT. ALL THE
C PCSITIONS ARE REFERENCED TO THE ACOUSTIC C'-NTER, ;iTH
C THE Z" COMPONENT BEING MEASURED UPWARDS FPOM THE ARRAY.
C

DOUBLE PRECISION T(1000,4) (1000 3) NT'1)O

0~~ DOUBLE PRECISICN V,TC,D,r UCENUMEi 0NOA)0
D =30.DO

DC 11 I1 1 M
UMER =6.D

DENOM O .DO
TC = TJI,4),

PJI J)== V*V*(TC*T&C-T (I 3) **2) /(D*2.DO)
NIJMHR NUMER +P (I J12
DENOM = LENO11 + (P(iJ)* 15.DO)**2

22 CONTINUE
* 11 CNTIL TC*DSQRT(NUMER/DENO01

FETURN
E ND

* C
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C S S.SSSSSSSSSSSSS SS SSSESSS.SSSSSSSSSSSS5SSSSS SSSSS.SS3SSSC
C

SUEEOUTINE POSN'VC JT,V,t!,P,'lA)

C Ttj:S FORTRAN SUBR.OUTINE iMPLEMENTS THE ADJJST7D 'I.AVY
C 1-;-HOZ NAVY-A FOR ESTIMIATING APPARENT POSITIONS.
C
C INP-UT ARE THE HYDROPHOIES TIMES ' FOR .11 501 ND SOURC-
C LOCATIOSS AND THE VELOCITY V AT THE-: ARR.AY.
C
C CU-PUT APE THE M APAR7:;: POSITIJN ESTI IAT:- S ?, AND
C THE CORRESPONDING A RAY 47EANiI.7 I.IES T. ALL
C POSITIONS ARE REFEFENCED TO THE ACOUSTIC CENTER OF

C THE ARRAY W4ITH THE Z CCiONEN: MEASURE UPWARDS
C FROM THE IRRAY.
C

INTEGER 9 I N 1 0DOUJBLE PRfClSICN T(1000 ,P(1 D ) , T
DOUBLE PRECISION V,D ,NU!IA, Jzi0M,CC10)

I D = 30.D0
DO 1 1 1 =1 M

DCC =0.50
TC T T(,4L)
DO 22 J= 1,3

DCC' DCC 15. DO + (V*V*(TO *TC- T (I, J)* 2) /(D 2.3L 0)
D C=)D=C P(I,J)**2

22 CONTINUE
* NU'IER = O.DO

DE NOM = 0. DO
DO 44I J =1 3

M P I J CV/DS R-T (DCC)

N H==NU E + P(I,j) **2
44 CC)NTI N UE

11 Cr NNT4N.11 TC*1DS RT(NU1iEl/DLNOM)
FETUR N
EN D

C

0
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C S SsSSSSS SS SSS.SSSSS SS sSS SSSS3335S.SSS S SSSSS S.3
C

S3JERGUTINE POSLS (T,V,,N,?,LSI)
C( c THIS FOiTRAN SU3ROUTINE IYIPLELENTS THE LE S SJAFES

C PLANAR :ETHOD I.5.
C
C INPUT ARE THE HYDEOPHONE TIMIES T FOR M1 SOUND SCURCE
C PosITIOiis, AND THE VELOCITY V AT THE ARRAY.
C
C INIPUTS AND OUTPUTS ARE THE SAM1E AS FOE THE
C SUBROUTINE POSNAV.

INTEGER M' I 3
DOUDL 1'E 'DRSCISION T(1000,4),P(10,3),LST(1)O3)
DCUBLE PRECISICN V,DISC,TC

C
DC 11 I1 1 M

LUSC 05
DO 22 J= 1,3

D SC~ DIS~ () **2
22 COll IN UE

LS - p = (T (1,1) +11, 2) +T (1,3)- T (1,4) )/2.D 0
D0O -3 J 1 ,3

= I() V*1SI I) P (I, J) IDS QET (D ISO)

11 CONTINUE

IETUEN
END

C
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C SSSSSS-cSSSS 35S . SSS :33 SSSSSSSSSSSS3s SSSSSSSJSS. Si
C

SUEUUTINE PCSLSC (:, V,MPLST)
C
C THIS FLMETFAN SUPROUTINE IMPLEMENTS THZ 31AS ADJUSTED
c LEA"'r S UAhES PLANAR METHOD L.S.C. FOR ESTIMATING
C APPlaEUi POSITIONS.
C
C INPUTS AND OUTPUTS ARE THE SAME AS FOR THE
C Sd..OUTINE POSLS.
C

INTEGER IAM J°K L
DOUBLE PFzCISICI T(1000 4) i?(lJ30,3) ,LST(1 )00)
DOUBLE PECISICN VA(4 ,),D(4),DISC, TD, IJS,R,2S.h, (3)

C SET U H{YDIROPiCNE POSITIONS
DO 44 J =1,3

DO 55 I = 1,4

55 CCNA74 I J ) :

A J) = 15.Do44 C CN TI4116
C
C CALCULATE ORIGINAL L.S. SOLUIION

DO 11 I = 1, M
DISC = O.DO
DO 22 J = 1,I

r 3 St= DISC + 1, )*2
22 CONTINUE

LSTJI) ==((I , 1) +T (1,2) +e (I,3)-T (1,4) /2. DO
DO .3 3= 1,3

3 3)NiE = (V*LST(I)*P(I,J))/DSRT(DISC)

RISQE = P I, 1)**2+P (1,2) **2+P (1,3) **2

S CONTINE D(4) + (P (I,K) - A(4,K)**2

D14) = DSSRT (D(4)D SC = 0 D. 0

TD = O.DO
DO 77 J = 1,3D(J) = O. DO0

D 8 K= 1,3
DIJ r (J) + (P (I,K) - A (J,K) **289 CONT NUE=

DI) = DS RT(D, JJ())D SC =DISC + D -D(J))**
TD = TD + D(J)

77 CCNTINUE
p C

C CALCULATE BIAS VECTOR E
DISC = DSQRTIDISC)
DO 66 J = 1,3

EIJ) ( (TD-D (4) * (D j4) -D (J) /(DISC*2. .DO ) -P (I,J)
6b CCNIN E

R2S R = O.DO
DO 99 J =1,3

0 S R Q S2 = + IIJ**21)9 CCON TINE

C
C ADJUST ORIGINAL RAY TRANSIT TIME

LST! = LST (I)*(DS QRT (R2SR/R1SQR))11 CONTINUE
RETURN
END
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C SS SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS $3 SSSSSSSSSSS SSSSSSSSSS

C
SUBROUTINE POS:LP (T,V,M, PMT, VAR)cC THIS FORTRAN SUBROUTINE IMPLEMENTS THE MAXEMU:*!

C lIKELIHOOD PLANAR METHOD M.L.P. FOE ESTIMATING
C APPARENT POSITICNS.
C
C INPUTS ARE THE HYDRDPHONE TI3ES T FOR M SOURCE
C POSITIONS, AND THE VELOCITY OF SOUND V AT THE ARRAY.C
C CUTPUTS ARE THE APPARENT POSITION ESTIMATES P AND
C RAY TRANSIT TIMES MT FOE EACH OF THE M POSITIONS.
C ALSO CUTPUT IS A VECTOR VAR OF 3 ESTIMATES OF THE
C TIMING ERROR VARIANCE. POSITIONS ARE ALL I EFEEENCED
C TO THE ACOUSTIC CENTER OF THE ARRAY, WITH THE Z
C COMPONENT MEASURED UPWARDS FROM 7HE ARRAY.C

INTEG-R M I J

DOUBLE PRELIfCN T(1300L4) P(1joO .3) 01)
DOUBLE PRECISION V,TC,D DIfF No LIER,DE NO, TL, C(3)
DOUBLE PRECISICN VAR(iO;0),C5(3),X(3)C
D = 30.DO
TOi = 1.D-4C

C INITIALIZE THE DIRETION COSINE ESTIMATE Bf
C USING THE LEAST SQUARES SOLUTION.
C
C LOCP THROUGH THE M POSITIONS
C

DO 11 I = 1,M
TC = T(I 4)
DENOM = ITC-T(I,1) )**2+ TC-T I,2j l **2

Do 12 1 NE-
2C JE - T(I,J))/DSQRT(DENOM)

C
ITER = 0

22 DENOM = 0. DO
ITER = ITER + 1
TC = O. DO

C USE ITERATICN FORMULAE TO DEVELOPE COSINES g
C AND TIME VALUES.
C

DO 33 J - 1 3

DEO DNOM + T (I, J)*C(J)
TC = TC + T(I,J)

33 CONTINUE
TC = ((TC+T (I,4))+D*(C(1)+C(2) +CJ3))/V) /.DO
DENOI = DENCM - -*(C(1)+C(2)+C(3))
DO 66 J 13

J1 AlI 9 J -TC)/DENOMCO(CN (J)-C(J)E
66 CNC

C CHECK ITERATICN TOLERANCES
C

DIFF = DMAXI(X(1,X%(2),X63))
63 IF ITER .L 10A GO TO 70 '16
63 FORMAT (2,'ITE ATIONS EXCEED 6
61 FORMAT (2X,'IN POSITION NO. '16

WRITE(6,60) ITER
WRITE(6 61) I
GO TO 11
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70 IF ( TOL .LT. DIFF ) GO TO 22
C

NUMER = O.DO
DENO 1 O.DOC

C CONVERT COSINES TO POSITIONS, AND TRANS. ATE TOC ACCUSTIC CENTER REFERENC2D COORDINATES.
C

DO 4'4 J =1 ,

P I J) = V*CAJ) *TC
DENO16 -1 DENO + *

NMI R = NU E + P(I,J)**-
44 CONTINUE

MT (I) = TC*DSQRT(NUMER/DENOM)
C
C E lIMATE VARIANCE
C

VARI) = VA ) + (T(I,J)-TC+D*C*J)/[)*2

55 CONTIN EEVAR I) V VAli(1)/4. DO
11 CCN NTINf.i

ETURN
END

C

0
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C SSSSSSSSSSSSSSSSSSSESSSSS SSSSSSSSSSSSSSSSSSSSSSSSSSSSESSSS

C

4C THIS rFTRAN SUBROUTINE IM~PLEMENTS THE MAXE AU !
C 1IKELIHO OD SPHERICAL METHOD A.L.S. FOR ESTIMAIN3
C APPARENT POSITIONS.
C
C INPUTS AND OUTPUTS ARE THE SAME AS FOR THE
C SUBROUTLINE POSMIP.
C

INTEGER M I J, IEE, 11 IER1 I'TER2
DOUBLE PaE6ISfCN TI2E (1006, 2 1000,3) VA1 riL(100DOUBLE PRECISITCN MI.T(lO00ts'bv' (1000 )(3) DSDC(3)
DOUBLE PRECISICN VRD TOA i TOL 2EPS LSD bFF
DOUBLE PRECISICN T(3) , c TAJ, TK 4) , V (5C Q3 , C 1(A3
DOUBILE PRECISICN X (3) DEN04 NUMr.R,DLDC( ().1 T D TJ
DOUBLE PRECISICN GP( 4 GPL44WAE(8, 4
DOUBLE PRECISICN GT,X 1Qi),X214) ,A(4) B4,
DOUBLE PRECISICN F1,F2 ,()

C
C SET GIOBAL VALUES
C

R = DODSQRET(5.DO) )/2.DO
TOLl = 1.D-5
T012 = l.D-5

C
q C START OUTERMOST I.C0P (ONE FOR EACH SOURCE 233 ITION)

C
DO 5 11 = 1,M

DENOM = O.DO
TAU = TIMEIII,4)
EPS = l.D-3
TC = TAU
DO 111 J = 1 3

C J = I( V E42Ic**C-2-T (J) **2)/(D*2. D) )+D/2. DOD NOM = ENO M + CJ *
ill CONTINUE

C
DO 122 = 3

122 CON r Nf E'N'
I C

C START MIDDLE LOOP (CREATE DERIVATIVE MATRIX GP(,))
C

ITER1 = 0
10 11 = TAU

ITE~l = ITER1 + 1
30 IF 41TER1 .LT.' 50T GO TO 300

311 FORMAT(2XS.XC SIVE NEWTON ITERS.1
31 FOMT2X ' IN POSITION .16)

WRITE ( 310
WRITE (6,311 11I
GO TO 5

300 L = 0.DO
S = 0.DO
DLDT = O.DO
DSD'I = 0.DO

DO 11 1 =1 3I)-
CT)~' TA *2 DV **2- ( 2. DO*D*TAU*C (E))/V

VUBV*K(I) *DS LT(K (I))
TK I1  (2) +C(I)K
Dc T(I)-DS*R (1 IC)*1(I) *DOC TAU)/VK(:)
DC j 4( i)*D *T~AU KI

o DLDT DLD.+ tC(I) *T(I *(D*C (I) -V*TAU) )/VK (I)



DSDT = DSEDT+T (L *(*C (I -V *TAU) /VK (I)A
.=L+4C (I)*TK(I))/DSQR(KI)

s= S+7K (I I/Dsl R4(K (1)
11 CCNT:NUE

DO 22 I = 1,3
Do 33 J = 1,13

33I J)(-K *DLDC (3)) /(L*L*DSQPRT( K ()))
GP 4,1~ DSZCfIj* (V*TC-D*.Lj

4, (P -D*DLDC (I)(.D-)G~i 1 ( DOS)/ ((1.DO-S) **2)
GP (I,I)= (*T ()D*T AU) DLDC (I)* (V*TK (1)
GP (I,I~ 1.DO - 4GPI I/ KI *L) I

P(1,4, = (T(I) *L*( *TAUD *C 1) I CK I DD

GP 1 4) = GP(1, 4) (VK (I) *L*L) 4
22 CCN~l U J

GP (4,4) 1.DO- ( DSDT* (V*TC-D*L) )-D*DLD-*i 1.DO -S))*/(V* .D-S)*2
C
C I NV EL -. ERIVATIVE MiATRIX

CALL ZGAUSS3 (4,0,GP, GP,I:ER,4)
C
C CALCULATE INITIAL NEWTON SEARCH SOLUTION

4 40 D GCf6i)-T(IT)/(DSQRT(K(I))*L)
44 CONI U

GC(4~ TAt-(V*TC-D*L)/(V* (I.DO-S))

CBNT14 J B (IGP ( 1) *GC ()

56 CN
55 CONTINUE

C B (4) = B (4) - GPI(L4,4) *GC (4)

C PREPARE FOR GOLDEN SECTION SEARCH
BPS = DMAX1(11D6 , (EPS/1.D1))
DO 66 1 1=

66 CONINb
A44) TAU

* C4 ) +R* (B (4)-A (4))

C START INNERMOST LOOP ( COMMENCE GOLDEN SECT: ON SEARCH
C TO IMPROVE THE INITIAL NEWTON SOLUTION)
C

ITER2 = 0
70 CALL OBJFCN fF1,L,K,TK,S,X1,D,V,T,TC)

ITEE2 = ITER 2 + 1
IF (ITER2 .LT;E50E)SGO TO 400

*410 FOREAT (2 X 0 EXCESIVE G.S.S. ITERS., P)S #',!6)
WRITE (6, 41 1I
GO TO 5

400 DIFF = .DO
Do 77 I = 1 3

DIFF = DIFF + (A (I) -3 (1))*
X2 (I) =A (I) B (I - xl I)

* 77 CCN LI4JE X
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.4I!

HAP=4) =2 A(4) + B (4) X 1l (4)

DiFE = IST DIFIF + (A(4)-B(4f**2)
C
C CHECK TOLERANCES - STOP G.S.S. IF TIGHT FNOJGH
C

IF ( EPS .GT. DIFF ) GO TO 100
C

CALL OBJFCN(F2,L,K,TK,S,X2,D,V,T,TC)C
C CHOOSE I3PROVING DIRECTION
C

IF AIF .LT. F2 ) 30 TO 90DO 8 1 3

88 CCNTLNJE

GC TC 70
C90 DO0S91

99 CONT'N'E. r I
x 4o A=~ ~4 +B (4) -Xl1 (4)
GO TO 70

C
C CECK TOLERANCES FOR NEWTON SEARCH ITERATI)NS
C AND PREP FOR NEXT NEWTON ITERATION IF NECESSAY
C
100 DO 144 1 = 1,3

14 I j : A (C (I) -Cl (I))
DIFF = DAX1 X(l) (2)X(.3))
F4 T OLl .L I. D fF 0 G TO 10

DI = DABS (TAC-Ti)
IF ( TOL2 Ll. DIFF GO TO 10

C
C DONE WITH II-TH SET OF TI IES A13 POSITIONS. MAKEx
C ESTIMATES, AND GO ON TO NEXT POSITION TO BE ESTIATED

15*CNTCU

VARML(II) = 0.+
DENOM = DO
NTUMER = O.DO
Do 155 J = 1,3

VARL(Il) = VARlil (11) + IK (J) *TK (J)

LNO = DENOM+P
4AI P( J) = V*TAUI*C (J -D/2 .DO

N A Efi NIJIIER + P (II,J) * *2
155 CONTINULE

VARFIL II) = VAFML( III +(TC-TA)*2 4D
SDEVIII) DS§RT (VARMLAE (I)) A)*2/4D1,T A TA*DSQRT (NU ER/ ENO)

5 CONTINUE
C WRITE (7900) (SDEV(),I 1,M)

4C900 FORMAT ( E15.5)
FEILJRN
END

C

113



C SSSSSSSSSSSSSSSSSSSSSSS3SSSSSSSSSSSSSSssssSSS SSSSSSSHSSSS
C

SUBRFOUTINE OBJFCN (F, 1,K,TK,S,X,D,V, T,:C)

C THIIS 7OETRAN SUBROUTINE IS CALLED BY THE SIBFLOUTINE
C POSMLS. IT CALCULATES NEUl VALUES FOR SEVERAL
C VARIABLES AS WELL AS A FUNCTIONAL VALUE WHICH IS THE
C rDECISIOq FACTOR DETEr-RM:Il.ING THE APPROPRIATE
C IM1FRCVING DIRECTION FOE THE GOLDZ'N SECTION SEAECH.
C

INTEGER I
DOUBLE PBECISICN FL,K(3),TK(3),S,X(L4),D,V, TC,T(3)

C
S = O.DO
L =O.D0
DO 11 1I ,

K A=x 4**2+(D/V) **2-((2.DO*D*X(4)*X(ifl)/V)
T)-IDSQRT4( I)
S Tffl( (A/SQ T(KI)

L L +( x(I*TKI)/S QzLT (K (I))
11 CONTINUE

F = O.DO
DO 22 1 = 1 3

F = F + (X(I) -TK I)/(DS QRT (K (I) ) *L) )*2
22 CO NTINlUE

F = F +(X (4 (V *TCD*L)/(V*1. DOS))*2
FETURN
END
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